Background: Magnetic resonance imaging (MRI) plays an irreplaceable role in the preoperative diagnosis of glioma, and its imaging features are the base of making treatment decisions in patients with glioma, but it is still controversial whether peritumoral edema shown by MRI from preoperative routine scans are associated with patient survival. The aim of this study was to assess the prognostic value of preoperative MRI features in patients with glioblastoma.

Methods: A retrospective review of 87 patients with newly diagnosed supratentorial glioblastoma was performed using medical records and MRI data from routine scans. The Kaplan-Meier method and COX proportional hazard model were applied to evaluate the prognostic impact on overall survival of pretreatment MRI features (including peritumoral edema, edema shape, necrosis, cyst, enhancement, tumor crosses midline, edema crosses midline, and tumor size).

Results: In addition to patient age, Karnofsky performance status (KPS) and postoperative chemoradiotherapy, peritumoral edema extent and necrosis on preoperative MRI were independent prognostic indicator for poor survival. Furthermore, patients with two unfavorable conditions (major edema and necrosis) had a shorter overall survival compared with the remainder.

Conclusions: Our data confirm that peritumoral edema extent and necrosis are helpful for predicting poor clinical outcome in glioblastoma. These features were easy to determine from routine MRI scans postoperatively and therefore could provide a certain instructive significance for clinical activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358863PMC
http://dx.doi.org/10.1186/s12957-015-0496-7DOI Listing

Publication Analysis

Top Keywords

peritumoral edema
20
mri
8
edema mri
8
poor clinical
8
clinical outcome
8
outcome glioblastoma
8
routine scans
8
preoperative mri
8
mri features
8
crosses midline
8

Similar Publications

Objective: To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.

Materials And Methods: A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

January 2025

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.

View Article and Find Full Text PDF

MYCN-amplified spinal ependymomas: a rare aggressive subtype. Illustrative cases.

J Neurosurg Case Lessons

January 2025

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.

Background: Spinal ependymomas are typically slow-growing tumors with a favorable prognosis. Recently, a new aggressive subtype has emerged with its own distinct histopathological and molecular features characterized by MYCN amplification. However, this subtype of spinal ependymoma is rare, and studies on its imaging characteristics are limited.

View Article and Find Full Text PDF

Bi-exponential diffusion-weighted imaging for differentiating high-grade gliomas from solitary brain metastases: a VOI-based histogram analysis.

Sci Rep

December 2024

The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, Shanxi, People's Republic of China.

This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!