Background: Heterozygous loss-of-function mutations in the X-linked CASK gene cause progressive microcephaly with pontine and cerebellar hypoplasia (MICPCH) and severe intellectual disability (ID) in females. Different CASK mutations have also been reported in males. The associated phenotypes range from nonsyndromic ID to Ohtahara syndrome with cerebellar hypoplasia. However, the phenotypic spectrum in males has not been systematically evaluated to date.
Methods: We identified a CASK alteration in 8 novel unrelated male patients by targeted Sanger sequencing, copy number analysis (MLPA and/or FISH) and array CGH. CASK transcripts were investigated by RT-PCR followed by sequencing. Immunoblotting was used to detect CASK protein in patient-derived cells. The clinical phenotype and natural history of the 8 patients and 28 CASK-mutation positive males reported previously were reviewed and correlated with available molecular data.
Results: CASK alterations include one nonsense mutation, one 5-bp deletion, one mutation of the start codon, and five partial gene deletions and duplications; seven were de novo, including three somatic mosaicisms, and one was familial. In three subjects, specific mRNA junction fragments indicated in tandem duplication of CASK exons disrupting the integrity of the gene. The 5-bp deletion resulted in multiple aberrant CASK mRNAs. In fibroblasts from patients with a CASK loss-of-function mutation, no CASK protein could be detected. Individuals who are mosaic for a severe CASK mutation or carry a hypomorphic mutation still showed detectable amount of protein.
Conclusions: Based on eight novel patients and all CASK-mutation positive males reported previously three phenotypic groups can be distinguished that represent a clinical continuum: (i) MICPCH with severe epileptic encephalopathy caused by hemizygous loss-of-function mutations, (ii) MICPCH associated with inactivating alterations in the mosaic state or a partly penetrant mutation, and (iii) syndromic/nonsyndromic mild to severe ID with or without nystagmus caused by CASK missense and splice mutations that leave the CASK protein intact but likely alter its function or reduce the amount of normal protein. Our findings facilitate focused testing of the CASK gene and interpreting sequence variants identified by next-generation sequencing in cases with a phenotype resembling either of the three groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449965 | PMC |
http://dx.doi.org/10.1186/s13023-015-0256-3 | DOI Listing |
Biotechnol Adv
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.
View Article and Find Full Text PDFFEBS J
December 2024
Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China.
Calcium/calmodulin-dependent serine protein kinase (CASK) interaction protein 1/2 (Caskin1/2) is essential neuronal synaptic scaffold protein in nervous system development. Knockouts of Caskin1/2 display severe deficits in novelty recognition and spatial memory. The tandem sterile alpha motif (SAM) domains of Caskin1/2, also conserved in their Drosophila homolog Ckn, are known to form homopolymers, yet their dynamic regulation mechanism remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China. Electronic address:
Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus and a major cause of end-stage renal disease. Isoferulic acid (IFA) is a phenolic compound that has strong antioxidant, anti-inflammatory, and hypoglycemic effects. Researches and our previous study showed the potential anti-diabetic capacity and anti- oxidative stress damage targeting podocytes of IFA.
View Article and Find Full Text PDFAdv Rehabil Sci Pract
November 2024
Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
Objective: To report practice based evidence built on clinical findings where an intensive therapeutic approach called ACQUIRE Therapy was used as a rehabilitation/habilitation tool for children diagnosed with CASK mutations. ACQUIRE Therapy delivery is based on principles of learning and guided by a therapeutic framework often used in the delivery of intensive therapy.
Design: Clinical Cohort.
Heredity (Edinb)
January 2025
Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with many years of phenotyping and genotyping can potentially address this problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!