Background: European hedgehogs (Erinaceus europaeus) are hosts for Ixodes hexagonus and I. ricinus ticks, which are vectors for zoonotic microorganisms. In addition, hedgehogs may carry several enteric zoonoses as well. It is unclear to what extent a presence of pathogens in hedgehogs poses a risk to public health, as information on the presence of zoonotic agents in hedgehogs in urban areas is relatively scarce.

Methods: Engorged ticks and hedgehog faeces were collected from rehabilitating hedgehogs. Ticks were screened individually for presence of Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum, and Candidatus Neoehrlichia mikurensis using PCR-based assays. Faecal samples were screened for presence of Campylobacter, Salmonella, Giardia, Cryptosporidium, and extended-spectrum cephalosporin-resistant-Escherichia coli (ESC)-resistant E. coli, using both culture-based and PCR-based methods.

Results: Anaplasma phagocytophilum and Borrelia genospecies B. afzelii, B. spielmanii, B. garinii, and B. burgdorferi sensu stricto were detected in both I. hexagonus and I. ricinus ticks. Despite their widespread distribution in the Netherlands, B. miyamotoi and Candidatus N. mikurensis were not detected in collected ticks. Analysis of hedgehog faecal samples revealed the presence of Salmonella enterica subspecies enterica and Campylobacter jejuni. In addition, ESC-resistant E. coli were observed in high prevalence in faecal samples, but no Shiga-toxin producing-E.coli were detected. Finally, potentially zoonotic protozoan parasites were observed in hedgehog faecal samples as well, including Giardia duodenalis assemblage A, Cryptosporidium parvum subtypes IIaA17G1R1 and IIcA5G3, and C. hominis subtype IbA10G2.

Conclusions: European hedgehogs in (sub)urban areas harbor a number of zoonotic agents, and therefore may contribute to the spread and transmission of zoonotic diseases. The relatively high prevalence of B. burgdorferi s.l. and A. phagocytophilum in engorged ticks, suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. To what extent can hedgehogs maintain the enteric zoonotic agents in natural cycles, and the role of (spill-back from) humans remains to be investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406014PMC
http://dx.doi.org/10.1186/s13071-015-0814-5DOI Listing

Publication Analysis

Top Keywords

zoonotic agents
16
faecal samples
16
engorged ticks
12
presence zoonotic
8
ticks hedgehog
8
hedgehog faeces
8
erinaceus europaeus
8
urban areas
8
hedgehogs
8
european hedgehogs
8

Similar Publications

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).

View Article and Find Full Text PDF

Background: Coxiella burnetii is the etiological agent of Q fever in humans, a zoonosis of increasingly important public health concern. The disease results in significant economic losses to livestock farmers and its presence in ready-to-eat dairy products poses a public health threat to consumers.

Aim: This study aimed to detect Coxiella burnetii in dairy products in Kwara State, Nigeria.

View Article and Find Full Text PDF

Survey of parasitic fauna data from wild animals through coproparasitological diagnosis in Southern Brazil.

BMC Vet Res

January 2025

Laboratório de Epidemiologia Veterinária, Departamento de Veterinária Preventiva, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil.

Background: The proximity between people and their domestic animals with wild animal populations can result in the spread of diseases with a significant impact on public health. Infection by parasites in wildlife is considered an important bioindicator of the current state of ecosystems, and studying the epidemiology of these infections is essential for a better understanding of natural foci. However, research on parasites in southern Brazil, especially in Rio Grande do Sul (RS), is considered incipient.

View Article and Find Full Text PDF

Psittaciformes kept as pets can serve as reservoirs of various microorganisms, many of which have zoonotic potential, including spp. In this study, the antifungal susceptibility profiles of 16 spp. isolated from the oral and cloacal cavities of 20 pet parrots were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!