Background: Breast neoplasms include different histopathological entities, varying from benign tumors to highly aggressive cancers. Despite the key role of imaging, traditional histology is still required for a definitive diagnosis. Confocal Laser Endomicroscopy (CLE) is a new technique, which enables to obtain histopathological images in vivo, currently used in the diagnosis of gastrointestinal diseases. This is a single-center pilot feasibility study; the main aim is to describe the basic morphological patterns of Confocal Laser Endomicroscopy in normal breast tissue besides benign and malignant lesions.

Methods: Thirteen female patients (mean age 52.7, range from 22 to 86) who underwent surgical resection for a palpable breast nodule were enrolled. CLE was performed soon after resection with the Cellvizio® Endomicroscopy System (Mauna Kea Technologies, Paris, France), by using a Coloflex UHD-type probe; intravenous fluorescein was used as contrast-enhancing agent. The surgical specimen was cut along the main axis; dynamic images were obtained and recorded using a hand-held probe directly applied both to the internal part of the lesion and to several areas of surrounding normal tissue. Each specimen was then sent for definitive histologic examination.

Results: Histopathology revealed a benign lesion in six patients (46%), while a breast cancer was diagnosed in seven women (54%). Confocal laser endomicroscopy showed some peculiar morphological patterns. Normal breast tissue was characterized by a honeycomb appearance with regular, dark, round or hexagonal glandular lobules on a bright stroma background; tubular structures, representing ducts or blood vessels, were also visible in some frames. Benign lesions were characterized by a well-demarcated "slit-like" structure or by lobular structures in abundant bright stroma. Finally, breast cancer was characterized by a complete architectural subversion: ductal carcinoma was characterized by ill-defined structures, with dark borders and irregular ductal shape, formingribbons, tubules or nests; mucinous carcinoma showed smaller cells organized in clusters, floating in an amorphous extracellular matrix.

Conclusions: This is the first pilot study to investigate the potential role of confocal laser imaging as a diagnostic tool in breast diseases. Further studies are required to validate these results and establish the clinical impact of this technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397672PMC
http://dx.doi.org/10.1186/s12885-015-1245-6DOI Listing

Publication Analysis

Top Keywords

confocal laser
20
laser endomicroscopy
16
breast
8
pilot study
8
morphological patterns
8
normal breast
8
breast tissue
8
breast cancer
8
bright stroma
8
confocal
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Vanderbilt University Medical Center, Nashville, TN, USA.

Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.

View Article and Find Full Text PDF

Background And Objective: Diagnosis of pathology in the mediastinum has proven quite challenging, given the wide variability of both benign and malignant diseases that affect a diverse array of structures. This complexity has led to the development of many different non-invasive and invasive diagnostic modalities. Historically, diagnosis of the mediastinum has relied on different imaging modalities such as chest X-ray, computed tomography (CT), magnetic resonance imaging, and positron emission topography.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!