Background: Fibrosing disorders of the lung, such as idiopathic pulmonary fibrosis, are characterized by progressive extracellular matrix accumulation that is driven by myofibroblasts. The transcription factor megakaryoblastic leukemia-1 (MKL1) mediates myofibroblast differentiation in response to several profibrotic stimuli, but the role it plays in mediating pulmonary fibrosis has not been fully elucidated. In this study, we utilized mice that had a germline deletion of MKL1 (MKL1 (-,-)) to determine the role that MKL1 plays in the development of bleomycin-induced pulmonary fibrosis.

Methods: Bleomycin or normal saline were intratracheally delivered to 9 to 12 week old female MKL1 (+,+) and MKL1 (-,-) mice. Mice were assessed for weight loss and survival to 28 days. Inflammatory responses were assessed through bronchoalveolar lavage at days 3 and 7 post-treatment. The development of pulmonary fibrosis was characterized using hydroxyproline assay and histological staining. MKL1 (+,+) and MKL1 (-,-) mouse lung fibroblasts were isolated to compare morphologic, gene expression and functional differences.

Results: MKL1 (-,-) mice demonstrated increased survival, attenuated weight loss, and decreased collagen accumulation compared to wild-type animals 28-days after intratracheal instillation of bleomycin. Histological analysis demonstrated decreased trichrome, smooth muscle α-actin, and fibronectin staining in MKL1(-,-) mice compared to MKL1 (+,+) controls. Differential cell counts from bronchoalveolar lavage demonstrated that there was attenuated neutrophilia 3 days after bleomycin administration, but no difference at day 7. Isolated mouse lung fibroblasts from MKL1 (-,-) mice had decreased contractility and deposited less fibronectin matrix compared to wild-type controls, suggesting a defect in key remodeling functions.

Conclusions: Altogether, these data demonstrate that MKL1 plays a significant role in mediating the fibrotic response to bleomycin injury. Loss of MKL1 attenuated early neutrophil influx, as well as myofibroblast-mediated remodeling. Targeting MKL1 activity may therefore be a useful strategy in treating pulmonary fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392778PMC
http://dx.doi.org/10.1186/s12931-015-0206-6DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
20
mkl1
14
mkl1 mkl1
12
mkl1 mice
12
megakaryoblastic leukemia-1
8
development bleomycin-induced
8
bleomycin-induced pulmonary
8
fibrosis characterized
8
mkl1 plays
8
weight loss
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.

View Article and Find Full Text PDF

Background: Myocardial infarction represents a coronary artery ailment with the highest incidence and fatality rates among cardiovascular conditions. However, effective pharmacological interventions remain elusive. This study seeks to elucidate the molecular mechanisms underlying the effects of on myocardial infarction through network pharmacology and experimental validation.

View Article and Find Full Text PDF

Hypersensitivity pneumonitis (HP), including pigeon breeder's lung (PBL), often progresses from acute inflammation to fibrosis, impairing lung function and limiting targeted therapeutic strategies. Mechanistic studies on PBL progression are limited by the lack of preclinical animal models and a predominant focus on patient data. This study explores the immunopathological characteristics of all stages of PBL in mice and evaluates the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) during the non-fibrotic stage.

View Article and Find Full Text PDF

The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis.

Respir Res

January 2025

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.

Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).

View Article and Find Full Text PDF

Introduction: People with idiopathic pulmonary fibrosis (IPF) and other forms of progressive pulmonary fibrosis (PPF) have a high symptom burden and a poor health-related quality of life (HRQoL). Despite efforts to offer specialised treatment, clinical care for these patients remains suboptimal and several nonmedical needs remain unaddressed. Developing a core outcome set (COS) can help to identify a minimum set of agreed-upon outcomes that should be measured and acted-upon in clinical care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!