Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of Mn12O12(OAc)(16-x)L(x)(H2O)4 molecular clusters (L = acetate, benzoate, benzenesulfonate, diphenylphosphonate, dichloroacetate) were electrocatalytically investigated as water oxidation electrocatalysts on a fluorine-doped tin oxide glass electrode. Four of the [Mn12O12] compounds demonstrated water oxidation activity at pH 7.0 at varying overpotentials (640-820 mV at 0.2 mA/cm(2)) and with high Faradaic efficiency (85-93%). For the most active complex, more than 200 turnovers were observed after 5 min. Two structure-function relationships for these complexes were developed. First, these complexes must undergo at least one-electron oxidation to become active catalysts, and complexes that cannot be oxidized in this potential window were inactive. Second, a greater degree of distortion at Mn1 and Mn3 centers correlated with higher catalytic activity. From this distortion analysis, either or both of these two Mn centers are proposed to be the catalytically active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b00398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!