Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401573PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124386PLOS

Publication Analysis

Top Keywords

methanogenic consortia
12
emulsion nutrition
8
nutrition solutions
8
nutritional supplement
8
consortia
6
methane
5
fermentation enhancement
4
methanogenic
4
enhancement methanogenic
4
methanogenic archaea
4

Similar Publications

To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as sp.

View Article and Find Full Text PDF

Dual-bioaugmentation strategy to simultaneously mitigate biofouling and promote methanogenesis in AnMBR.

Water Res

February 2025

School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Anaerobic membrane bioreactor (AnMBR) is a promising technology for resource and energy recovery from wastewater owing to its high-quality effluent and methane production. However, membrane fouling and susceptible methanogenesis have ever compromised the AnMBR. This work attempted to mitigate membrane fouling and promote methane production simultaneously in AnMBR through bioaugmentation with a consortium consisting of both quorum quenching (QQ) bacteria and methanogens.

View Article and Find Full Text PDF

Introduction: Molecular hydrogen is produced by the fermentation of organic matter and consumed by organisms including hydrogenotrophic methanogens and sulfate reducers in anoxic marine sediment. The thermodynamic feasibility of these metabolisms depends strongly on organic matter reactivity and hydrogen concentrations; low organic matter reactivity and high hydrogen concentrations can inhibit fermentation so when organic matter is poor, fermenters might form syntrophies with methanogens and/or sulfate reducers who alleviate thermodynamic stress by keeping hydrogen concentrations low and tightly controlled. However, it is unclear how these metabolisms effect porewater hydrogen concentrations in natural marine sediments of different organic matter reactivities.

View Article and Find Full Text PDF

Keystone taxa drive the synchronous production of methane and refractory dissolved organic matter in inland waters.

Water Res

February 2025

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China.

The production of both methane (CH) and refractory dissolved organic matter (RDOM) depends on microbial consortia in inland waters, and it is unclear yet the link of these two processes and the underlying microbial regulation mechanisms. Therefore, a large-scale survey was conducted in China's inland waters, with the measurement of CH concentrations, DOM chemical composition, microbial community composition, and relative environmental parameters mainly by chromatographic, optical, mass spectrometric, and high-throughput sequencing analyses, to clarify the abovementioned questions. Here, we found a synchronous production of CH and RDOM linked by microbial consortia in inland waters.

View Article and Find Full Text PDF

New Horizons in Micro/Nanoplastic-Induced Oxidative Stress: Overlooked Free Radical Contributions and Microbial Metabolic Dysregulations in Anaerobic Digestion.

Environ Sci Technol

December 2024

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China.

Article Synopsis
  • Excessive reactive oxygen species (ROS) production caused by micro/nanoplastics (MPs/NPs) is toxic to anaerobic microbes, negatively impacting their viability and methane production during anaerobic digestion (AD).
  • The study identified that polypropylene (PP)-MPs/NPs increase concentrations of environmentally persistent free radicals (EPFRs) and hydroxyl radicals (OH), leading to a significant rise in ROS and an up to 50% decrease in methane output at high concentrations of PP-MPs/NPs.
  • Changes in microbial communities were observed, shifting from hydrogenotrophic methanogens to acetoclastic and hydrogenotrophic ones due to their superior ability to cope with ROS-induced stress, along with down
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!