An Extended Chain and Trinuclear Complexes Based on Pt(II)-M (M = Tl(I), Pb(II)) Bonds: Contrasting Photophysical Behavior.

Inorg Chem

‡Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain.

Published: May 2015

AI Article Synopsis

Article Abstract

The syntheses and structural characterizations of a Pt-Tl chain [{Pt(bzq)(C6F5)2}Tl(Me2CO)]n 1 and two trinuclear Pt2M clusters (NBu4)[{Pt(bzq)(C6F5)2}2Tl] 2 and [{Pt(bzq)(C6F5)2}2Pb] 3 (bzq = 7,8-benzoquinolinyl), stabilized by donor-acceptor Pt → M bonds, are reported. The one-dimensional heterometallic chain 1 is formed by alternate "Pt(bzq)(C6F5)2" and "Tl(Me2CO)" fragments, with Pt-Tl bond separations in the range of 2.961(1)-3.067(1) Å. The isoelectronic trinuclear complexes 2 (which crystallizes in three forms, namely, 2a, 2b, and 2c) and 3 present a sandwich structure in which the Tl(I) or Pb(II) is located between two "Pt(bzq)(C6F5)2" subunits. NMR studies suggest equilibria in solution implying cleavage and reformation of Pt-M bonds. The lowest-lying absorption band in the UV-vis spectra in CH2Cl2 and tetrahydrofuran (THF) of 1, associated with (1)MLCT/(1)L'LCT (1)[5dπ(Pt) → π*(bzq)]/(1)[(C6F5) → bzq], displays a blue shift in relation to the precursor, suggesting the cleavage of the chain maintaining bimetallic Pt-Tl fragments in solution, also supported by NMR spectroscopy. In 2 and 3, it shows a blue shift in THF and a red shift in CH2Cl2, supporting a more extensive cleavage of the Pt-M bonds in THF solutions than in CH2Cl2, where the trinuclear entities are predominant. The Pt-Tl chain 1 displays in solid state a bright orange-red emission ascribed to (3)MM'CT (M' = Tl). It exhibits remarkable and fast reversible vapochromic and vapoluminescent response to donor vapors (THF and Et2O), related to the coordination/decoordination of the guest molecule to the Tl(I) ion, and mechanochromic behavior, associated with the shortening of the intermetallic Pt-Tl separations in the chain induced by grinding. In frozen solutions (THF, acetone, and CH2Cl2) 1 shows interesting luminescence thermochromism with emissions strongly dependent on the solvent, concentration, and excitation wavelengths. The Pt2Tl complex 2 shows an emission close to 1, ascribed to charge transfer from the platinum fragment to the thallium [(3)(L+L')MM'CT]. 2 also shows vapoluminescent behavior in the presence of vapors of Me2CO, THF, and Et2O, although smaller and slower than those of 1. The trinuclear neutral complex Pt2Pb 3 displays a blue-shift emission band, tentatively assigned to admixture of (3)MM'CT (3)[Pt(d) → Pb(sp)] with some metal-mediated intraligand ((3)ππ/(3)ILCT) contribution. In contrast to 1 and 2, 3 does not show vapoluminescent behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b00083DOI Listing

Publication Analysis

Top Keywords

trinuclear complexes
8
tli pbii
8
pt-tl chain
8
pt-m bonds
8
blue shift
8
thf et2o
8
vapoluminescent behavior
8
thf
6
trinuclear
5
pt-tl
5

Similar Publications

Unlocking CO Activation With a Novel Ni-Hg-Ni Trinuclear Complex.

Angew Chem Int Ed Engl

January 2025

Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.

Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]Hg, [NiHg], featuring a trinuclear Ni-Hg-Ni core (POCOP=κ,κ,κ-2,6-(i-PrPO)CH). [NiHg] reacts with CO to give the carbonate-bridged complex [NiCO].

View Article and Find Full Text PDF

Phosphaguanidinate yttrium carbene, carbyne and carbide complexes: three distinct C1 functionalities.

Dalton Trans

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.

The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.

View Article and Find Full Text PDF

What happened to BBR3464 and where to from here for multinuclear platinum-based anticancer drugs?

Dalton Trans

December 2024

School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia.

The development of the trinuclear platinum(II) complex BBR3464 (also known as triplatin) in the late 1990s was meant to be a revolution in the field of platinum chemotherapy. What made it remarkable was that it defied many of the known structure-activity rules for platinums; it is cationic, has a single labile leaving group on each terminal platinum, and it binds DNA in ways different to mononuclear platinum drugs, like cisplatin and oxaliplatin. The flexible, long-range adducts the drug forms with DNA means that it showed activity in cancers not typically sensitive to platinums, and more importantly, BBR3464 demonstrated an ability to overcome acquired resistance to platinum drugs.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on synthesizing and analyzing the structure of a compound featuring imidazolium ions as countercations, based on previously known crystal structures.
  • Various techniques, including thermal stability assessments and spectral analysis, reveal differences in how the pentadentate chelator µ-EDTA interacts with copper centers in two different compounds.
  • The findings highlight the impact of imidazolium ions on the magnetic properties and stability of the structures, supported by DFT calculations showing significant hydrogen bonding and stacking interactions within the trinuclear anion.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!