Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201445346DOI Listing

Publication Analysis

Top Keywords

th1 cells
36
notch pathway
12
cells lsecs
12
cells
11
th1
9
liver sinusoidal
8
sinusoidal endothelial
8
endothelial cells
8
cells notch
8
lsec-stimulated th1
8

Similar Publications

The development and maintenance of immunity against visceral leishmaniasis.

Front Immunol

January 2025

Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Understanding the development and maintenance of immunological memory is important for efforts to eliminate parasitic diseases like leishmaniasis. Leishmaniasis encompasses a range of pathologies, resulting from infection with protozoan parasites belonging to the subgenera and of the genus A striking feature of these infections is that natural or drug-mediated cure of infection generally confers life-long protection against disease. The generation of protective T cell responses are necessary to control infections.

View Article and Find Full Text PDF

Control of T-cell immunity by fatty acid metabolism.

Ann Pediatr Endocrinol Metab

December 2024

Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.

Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically.

View Article and Find Full Text PDF

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

January 2025

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

Dendritic cells (DCs) are promising targets for cancer immunotherapies because of their central role in the initiation and control of immune responses. The rare cDC1 population is of particular interest because of its remarkable ability to cross-present antigens (Ag) to CD8+ T cells, to promote Th1 cell polarization and NK cell activation and recruitment. However, the spatial organization and specific functions of cDC1s in response to immunotherapy remain to be clearly characterized in human tumors.

View Article and Find Full Text PDF

Neuro-Behçet's disease: an update of clinical diagnosis, biomarkers and immunopathogenesis.

Clin Exp Immunol

January 2025

Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

Neuro-Behçet's disease (NBD) is a more severe but rare symptom of Behçet's disease (BD), which is mainly divided into parenchymal NBD (p-NBD) involving brain stem, spinal cord, and cerebral cortex. Non-p-NBD manifests as intracranial aneurysm, cerebral venous thrombosis, peripheral nervous system injuries, and mixed parenchymal and non-parenchymal disease. P-NBD is pathologically characterized by perivasculitis presenting with cerebrospinal fluid (CSF) pleocytosis, elevated total protein, and central nervous system (CNS) infiltration of macrophages and neutrophils, which are subdivided into acute and chronic progressive stages according to relapsing-remitting courses and responses to steroids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!