Background: Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats.

Methods: Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT).

Results: There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III).

Conclusion: We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355544PMC
http://dx.doi.org/10.1186/s12893-015-0003-7DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
16
superior mesenteric
16
mesenteric artery
12
ischemia/reperfusion injury
8
rat model
8
model superior
8
artery occlusion
8
melatonin prevents
8
harmful effects
8
intestinal tissues
8

Similar Publications

Caspase-8 promotes innate immunity in the Chinese mitten crab by regulating the expression of antimicrobial peptides and apoptosis in hemocyte.

Dev Comp Immunol

December 2024

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:

In mammals, caspase-8 primarily functions as an initiator caspase that regulates apoptosis, while in Drosophila, the caspase-8 ortholog DREDD not only induces apoptosis during development but also regulates antimicrobial peptides (AMPs) expression during Gram-negative bacterial infection-induced immune responses. However, the immune-related function of caspase-8 in the crustacean remains unknown. In the present study, the open reading frame of EsCaspase-8 was cloned from the Chinese mitten crab (Eriocheir sinensis).

View Article and Find Full Text PDF

Gram-negative bacteria can use the type III secretion system (T3SS) to inject effector proteins into eukaryotic target cells. In this chapter, we describe the application of a light-controlled T3SS, based on the targeted sequestration of an essential dynamic T3SS component with the help of optogenetic interaction switches. This method enables to control the secretion or injection into eukaryotic cells for a wide range of protein cargos with high temporal and spatial precision.

View Article and Find Full Text PDF

Bacterial leaf blight (BLB) caused by pv. () has shown a high incidence rate in rice fields in recent years. Rice resistance breeding is considered as the most effective method for achieving economical and sustainable management of BLB disease.

View Article and Find Full Text PDF

Induction of Oral Lichen Planus-like Histopathology in Mice.

J Dent Res

December 2024

Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea.

Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory mucosal disease of unknown etiology. The lack of suitable animal models has hampered understanding of its etiopathogenesis. This study aimed to clarify the contribution of bacterial infection and zinc deficiency (ZD) in OLP pathogenesis by developing a murine model.

View Article and Find Full Text PDF

Carbapenemase-producing (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!