A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. | LitMetric

Background: The tetrazolium-based MTT assay has long been regarded as the gold standard of cytotoxicity assays as it is highly sensitive and has been miniaturised for use as a high-throughput screening assay. However, various reports refer to interference by different test compounds, including the glycolysis inhibitor 3-bromopyruvate, with the conversion of the dye to coloured formazan crystals. This study assessed the linear range and reproducibility of three commonly used cell enumeration assays; the neutral red uptake (NRU), resazurin reduction (RES) and sulforhodamine B (SRB) assays, in comparison to the MTT assay. Interference between the MTT assay and three glycolysis inhibitors, 2-deoxyglucose, 3-bromopyruvate and lonidamine, was investigated.

Results: Data indicate that the NRU, RES and SRB assays showed the smallest variability across the linear range, while the largest variation was observed for the MTT assay. This implies that these assays would more accurately detect small changes in cell number than the MTT assay. The SRB assay provided the most reproducible results as indicated by the coefficient of determination after a limited number of experiments. The SRB assay also produced the lowest variance in the derived 50% inhibitory concentration (IC50), while IC50 concentrations of 3-bromopyruvate could not be detected using either the MTT or RES assays after 24 hours incubation. Interference in the MTT assay was observed for all three tested glycolysis inhibitors in a cell-free environment. No interferences were observed for the NRU, SRB or RES assays.

Conclusions: This study demonstrated that the MTT assay was not the best assay in a number of parameters that must be considered when a cell enumeration assay is selected: the MTT assay was less accurate in detecting changes in cell number as indicated by the variation observed in the linear range, had the highest variation when the IC50 concentrations of the glycolysis inhibitors were determined, and interference between the MTT assay and all the glycolysis inhibitors tested were observed. The SRB assay performed best overall considering all of the parameters, suggesting that it is the most suitable assay for use in preclinical screening of novel therapeutic compounds with oxido-reductive potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349615PMC
http://dx.doi.org/10.1186/s13104-015-1000-8DOI Listing

Publication Analysis

Top Keywords

mtt assay
40
assay
17
glycolysis inhibitors
16
cell enumeration
12
linear range
12
interference mtt
12
srb assay
12
mtt
11
three commonly
8
commonly cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!