The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392669PMC
http://dx.doi.org/10.4103/1673-5374.152375DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cord injury
24
nogo-a expression
12
nogo-a
9
central nervous
8
nervous system
8
mrna protein
8
spinal
7
cord
7
injury
7

Similar Publications

Context.—: Primary angiitis of the central nervous system is a rare vasculitis that affects small parenchymal and leptomeningeal vessels in the brain and spinal cord. As brain biopsy remains the gold standard in diagnosis, the diagnostic approach to brain biopsies for vasculitis is well described.

View Article and Find Full Text PDF

Introduction: Periodontitis is the most common non-communicable disease in humans. The main challenge in the treatment of periodontitis is to effectively control periodontal inflammation and promote tissue repair. Human umbilical cord mesenchymal stem cells-derived exosomes (hucMSCs-exo) have been reported to modulate inflammatory responses and promote tissue repairment mainly through miRNAs in several diseases.

View Article and Find Full Text PDF

Early functional proprioceptive stimulation in high spinal cord injury: a pilot study.

Front Rehabil Sci

February 2025

Département d'Anesthésie Réanimation, Service de Rééducation Post-Réanimation (SRPR), Hôpital Universitaire de Bicêtre, APHP, Université Paris-Saclay, Le Kremlin-Bicêtre, France.

Introduction: The first months following a spinal cord injury (SCI) are crucial for promoting recovery. However, patients with high SCIs often require prolonged stays in intensive care units (ICUs), delaying optimal rehabilitation due to limited resources. This study examined the safety, feasibility, and effects on spasticity and muscle atrophy of an early rehabilitation technique using non-invasive sensory stimulation and called functional proprioceptive stimulation (FPS).

View Article and Find Full Text PDF

Comments on "H4K12 Lactylation-Activated Spp1 in Reprogrammed Microglia Improves Functional Recovery After Spinal Cord Injury".

CNS Neurosci Ther

March 2025

Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China.

View Article and Find Full Text PDF

Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons.

Int J Mol Sci

March 2025

Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.

Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!