Statement Of Problem: The bonding and biological properties of currently used luting/cementing materials need to be improved. 4-Acryloyloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butylborane (4-META/MMA-TBB) resin is primarily used for splinting mobile teeth or treating fractured teeth. It undergoes moisture-resistant polymerization and bonds strongly to dentin and metals.
Purpose: The purpose of this in vitro study was to compare the biological and biochemical properties META/MMA-TBB resin with those of conventional polymethyl methacrylate (PMMA)-MMA resin and other currently used luting materials in order to determine whether it may be a viable dental luting agent.
Material And Methods: The degree of polymerization of 4-META/MMA-TBB resin, PMMA-MMA autopolymerizing resin, 10-methacryloyloxydecyl dihydrogen phosphate-dimethacrylate (MDP-DMA) adhesive resin, and a glass ionomer cement was measured by Fourier-transformed infrared spectroscopy. Free radical production during setting was evaluated by electron spin resonance (ESR) spectroscopy. Rat dental pulp cells cultured on these materials were examined for cell viability, attachment, proliferation, and functional phenotype.
Results: The degree of polymerization of 4-META/MMA-TBB resin was 82% thirty minutes after preparation, compared to 66% for PMMA-MMA autopolymerizing resin. ESR spectroscopy revealed free radical production from 4-META/MMA-TBB resin and glass ionomer cement was equivalent 24 hours after preparation, with no spike in radical generation observed. In contrast, free radical production from PMMA-MMA and MDP-DMA adhesive resins was rapid and sustained and 10 to 20 times greater than that from 4-META/MMA-TBB. The percentage of viable dental pulp cells 24 hours after seeding was considerably higher on MDP-DMA and 4-META/MMA-TBB resin than on glass ionomer cement. Cell number, proliferation, and alkaline phosphatase activity were highest on 4-META/MMA-TBB resin and lowest on the glass ionomer cement.
Conclusions: 4-META/MMA-TBB resin is at least as biocompatible, and perhaps even more biocompatible, than other current luting materials, with fast, favorable, and nontoxic polymerization properties. Further in vivo and human studies of 4-META/MMA-TBB resin as a dental luting agent are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prosdent.2014.10.016 | DOI Listing |
Dent Mater J
December 2024
Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College.
The material concept of resin cements capable of disintegrating due to near-infrared (NIR) radiation was verified. The cements were prepared by adding silicon carbide (SiC), which heats upon absorbing NIR rays, and thermally expandable particles (TEPs) to 4-META/MMA-TBB resin cement. The microtensile bond strength (µTBS) and cytocompatibility of the cements were evaluated.
View Article and Find Full Text PDFEur J Oral Sci
October 2024
Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
This study evaluated the effects of two chlorophyll derivatives, sodium copper chlorophyllin (Cu-Chl) and sodium iron chlorophyllin (Fe-Chl), on the bond strength between a self-curing luting agent (4-META/MMA-TBB resin) and dentin. Five aqueous primers containing 35% 2-hydroxyethylmethacrylate with 0.007% Cu-Chl, 0.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
The aim of this study was to compare the long-term bonding performance to lithium disilicate (LDS) ceramic between one-bottle and two-bottle bonding agents. Bonding performance was investigated under these LDS pretreatment conditions: with hydrofluoric acid (HF) only, without HF, with a two-bottle bonding agent (Tokuyama Universal Bond II) only. Shear bond strengths between LDS and nine resin cements (both self-adhesive and conventional adhesive types) were measured at three time periods: after one-day water storage (Base), and after 5000 and 20,000 thermocycles (TC 5k and TC 20k respectively).
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Department of Clinical Dentistry, Walailak University International College of Dentistry (WUICD), 87 Ranong 2 Road, Dusit, Bangkok 10300, Thailand.
Increasing demand for adult orthodontic treatment using clear aligners has highlighted challenges in bonding clear aligner attachments to various restorations. Specifically, the bond strength of clear aligner attachments to glazed monolithic zirconia has not been extensively studied. This study aims to compare the shear bond strength (SBS) and mode of failure (MOF) of conventional bonding methods versus Superbond C&B (4-META/MMA-TBB resin cement) for clear aligner attachments on glazed monolithic zirconia.
View Article and Find Full Text PDFJ Dent Sci
July 2024
Department of Masticatory Function and Health Science, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
Background/purpose: 4-methacryloyloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butyl borane (4-META/MMA-TBB) resin is used for indirect restorations. We aimed to evaluate effects of immersion in 4-META/MMA-TBB-activated liquid on the bond strength of root canal dentin.
Materials And Methods: We used freshly extracted single-rooted human teeth.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!