The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

Arthropod Struct Dev

Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany; Department of Genetics, Friedrich Schiller University, Jena, Philosophenweg 12, 07743 Jena, Germany. Electronic address:

Published: May 2015

Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.asd.2015.04.001DOI Listing

Publication Analysis

Top Keywords

silk glands
24
spider silk
16
ampullate glands
16
glands
11
embryonic origin
8
silk
8
glands spider
8
spider cupiennius
8
cupiennius salei
8
silk production
8

Similar Publications

Protocol for the isolation of silk glands from silkworms for snRNA-seq and spatial transcriptomics.

STAR Protoc

January 2025

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

The silk glands (SGs) of silkworms specifically synthesize silk proteins, thus strongly influencing the yield and quality of silk. Here, we present a protocol for isolating SG nuclei from silkworms and obtaining high-quality tissue slices for spatial transcriptomics. We describe steps for rearing, dissecting, and nucleus isolation.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Complete BmFib-L knockout reveals its indispensable role in silk fiber formation.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:

Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.

View Article and Find Full Text PDF

BmE2F1 regulates endoreplication of silk gland cells in silkworm, Bombyx mori.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China. Electronic address:

Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands.

View Article and Find Full Text PDF

High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from .

Int J Mol Sci

November 2024

College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.

Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!