In this study, a simple and sensitive aptamer-based fluorescence method for the detection of Kanamycin A by using gold nanoparticles (AuNPs) has been developed. In this assay, AuNPs were utilized as DNA nanocarrier as well as efficient fluorescence quencher. In the absence of Kanamycin A, dye-labeled aptamer could be adsorbed onto the surface of AuNPs and the fluorescence signal was quenched. In the presence of Kanamycin A, the specific binding between dye-labeled aptamer and its target induced the formation of rigid structure, which led to dye-labeled aptamer releasing from the surface of AuNPs and the fluorescence intensity was recovered consequently. Under optimum conditions, calibration modeling showed that the analytical linear range covered from 0.8nM to 350nM and the detection limit of 0.3nM was realized successfully. This proposed bio-assay also showed high selectivity over other antibiotics. Meanwhile, this strategy was further used to determine the concentrations of Kanamycin A in milk sample with satisfying results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2015.02.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!