Prospective comprehensive genomic profiling of advanced gastric carcinoma cases reveals frequent clinically relevant genomic alterations and new routes for targeted therapies.

Oncologist

Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA.

Published: May 2015

Background: Gastric cancer (GC) is a major global cancer burden and the second most common cause of global cancer-related deaths. The addition of anti-ERBB2 (HER2) targeted therapy to chemotherapy improves survival for ERBB2-amplified advanced GC patients; however, the majority of GC patients do not harbor this alteration and thus cannot benefit from targeted therapy under current practice paradigms.

Materials And Methods: Prospective comprehensive genomic profiling of 116 predominantly locally advanced or metastatic (90.0%) gastric cancer cases was performed to identify genomic alterations (GAs) associated with a potential response to targeted therapies approved by the U.S. Food and Drug Administration or targeted therapy-based clinical trials.

Results: Overall, 78% of GC cases harbored one clinically relevant GA or more, with the most frequent alterations being found in TP53 (50%), ARID1A (24%), KRAS (16%), CDH1 (15%), CDKN2A (14%), CCND1 (9.5%), ERBB2 (8.5%), PIK3CA (8.6%), MLL2 (6.9%), FGFR2 (6.0%), and MET (6.0%). Receptor tyrosine kinase genomic alterations were detected in 20.6% of cases, primarily ERBB2, FGFR2, and MET amplification, with ERBB2 alterations evenly split between amplifications and base substitutions. Rare BRAF mutations (2.6%) were also observed. One MET-amplified GC patient responded for 5 months to crizotinib, a multitargeted ALK/ROS1/MET inhibitor.

Conclusion: Comprehensive genomic profiling of GC identifies clinically relevant GAs that suggest benefit from targeted therapy including MET-amplified GC and ERBB2 base substitutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425384PMC
http://dx.doi.org/10.1634/theoncologist.2014-0378DOI Listing

Publication Analysis

Top Keywords

comprehensive genomic
12
genomic profiling
12
clinically relevant
12
genomic alterations
12
targeted therapy
12
prospective comprehensive
8
targeted therapies
8
gastric cancer
8
benefit targeted
8
base substitutions
8

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Comprehensive Perioperative Management of PFAPA Syndrome: Insights From Clinical Cases.

J Perianesth Nurs

January 2025

Department of Anesthesiology and Reanimation, University of Baskent, Ankara, Turkey.

Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, a common cause of recurrent fever in childhood, presents a challenge in both diagnosis and management. While initially considered a monogenic disorder, recent research has highlighted its complex genetic underpinnings, involving noncoding genome regions and immune-mediated cytokine dysregulation. This complexity underscores the need for comprehensive perioperative management strategies, particularly in surgical interventions such as tonsillectomy and adenoidectomy.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!