Despite the global burden of cardiovascular disease, investment in cardiovascular drug development has stagnated over the past 2 decades, with relative underinvestment compared with other therapeutic areas. The reasons for this trend are multifactorial, but of primary concern is the high cost of conducting cardiovascular outcome trials in the current regulatory environment that demands a direct assessment of risks and benefits, using clinically-evident cardiovascular endpoints. To work toward consensus on improving the environment for cardiovascular drug development, stakeholders from academia, industry, regulatory bodies, and government agencies convened for a think tank meeting in July 2014 in Washington, DC. This paper summarizes the proceedings of the meeting and aims to delineate the current adverse trends in cardiovascular drug development, understand the key issues that underlie these trends within the context of a recognized need for a rigorous regulatory review process, and provide potential solutions to the problems identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jacc.2015.03.016 | DOI Listing |
Pol J Vet Sci
June 2024
College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.
Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.
Background: The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD).
Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression.
Front Physiol
December 2024
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!