Background And Aim: Crohn's disease (CD) patients undergo many radiological studies employing ionizing radiation for diagnosis and management purposes. Our aim was to assess the total radiation exposure of our patients over the years, to estimate the risk factors for exposure to high doses, and to correlate radiation exposure to immunosuppression.

Methods: The cumulative effective dose of radiation (CEDR) was calculated multiplying the number of imaging studies by the effective dose of each examination.

Results: A total of 451 patients with CD (226 female) were followed during 11.0 years (interquartile range [IQR]: 6.0-16.0), with 52.1% of the patients being classified with penetrating (B3) and 38.6% being steroid-dependent. About 16% were exposed to high-radiation dose levels (CEDR >50 mSv) and 4% were exposed to CEDR >100 mSv. The mean CEDR between age 26 and 35 years was 12.539 mSv and a significant dose of radiation (over 50 mSv) was achieved at a median age of 40 (IQR: 29.0-47.0). Abdominal-pelvic computed tomography scan was the examination that contributed the most for CEDR. Patients with B3 phenotype, previous surgery, azathioprine, and anti-tumor necrosis factor (TNF)-α therapy were exposed earlier on the course of the disease to CEDR >50 mSv (p < 0.001). The value of CEDR in the patients under immunosuppression mainly increased in the first year of immunosuppression.

Conclusion: Penetrating phenotype, abdominal surgery, steroid resistance or steroid dependence, and treatment with anti-TNF-α and azathioprine were predictive factors for high CEDR. It was also demonstrated that immunosuppression and anti-TNF-α treatment were followed by a sustained increment of radiation exposure and that a significant dose of radiation was achieved <40 years of age.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00365521.2015.1037344DOI Listing

Publication Analysis

Top Keywords

radiation exposure
16
dose radiation
12
ionizing radiation
8
crohn's disease
8
effective dose
8
cedr
8
cedr >50
8
>50 msv
8
cedr patients
8
radiation
7

Similar Publications

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Deep FS: A Deep Learning Approach for Surface Solar Radiation.

Sensors (Basel)

December 2024

Department of Computer Engineering, Konya Food and Agriculture University, Konya 42080, Turkey.

Contemporary environmental challenges are increasingly significant. The primary cause is the drastic changes in climates. The prediction of solar radiation is a crucial aspect of solar energy applications and meteorological forecasting.

View Article and Find Full Text PDF

The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.

View Article and Find Full Text PDF

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!