Ultrasound blood peak velocity estimates are routinely used for diagnostics, such as the grading of a stenosis. The peak velocity is typically assessed from the Doppler spectrum by locating the highest frequency detectable from noise. The selected frequency is then converted to velocity by the Doppler equation. This procedure contains several potential sources of error: the frequency selection is noise dependent and sensitive to the spectral broadening, which, in turn, is affected by the Doppler angle uncertainty. The result is, often, an inaccurate estimate. In this work we propose a new method that removes the aforementioned errors. The frequency is selected by exploiting a mathematical model of the Doppler spectrum that has recently been introduced. When a very large sample volume is used, which includes all the vessel section, the model is capable of predicting the exact threshold to be used without the need of broadening compensation. The angle ambiguity is solved by applying the threshold to the Doppler spectra measured from two different directions, according to the vector Doppler technique. The proposed approach has here been validated through Field II simulations, phantom experiments, and tests on volunteers by using defocused waves to insonify a large region from a linear array probe. A mean error lower than 1% and a mean coefficient of variability lower than 5% were measured in a variety of experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2015.006982DOI Listing

Publication Analysis

Top Keywords

peak velocity
12
blood peak
8
vector doppler
8
doppler spectrum
8
doppler
7
accurate blood
4
velocity
4
velocity estimation
4
estimation spectral
4
spectral models
4

Similar Publications

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

Motlagh, JG and Lipps, DB. The contribution of muscular fatigue and shoulder biomechanics to shoulder injury incidence during the bench press exercise: A narrative review. J Strength Cond Res 38(12): 2147-2163, 2024-Participation in competitive powerlifting has rapidly grown over the past two decades.

View Article and Find Full Text PDF

This investigation evaluated validity and reliability of the HUMAC360 linear position transducer (LPT) compared to the Tendo Sport Weightlifting Analyzer (TENDO) for measuring mean velocity (MV), peak velocity (PV), and displacement (D) during the bench press. Seventeen recreationally active individuals completed three visits. During visit one, participants were assessed for their one repetition maximum (1RM) bench press.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.

Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.

View Article and Find Full Text PDF

To assess the effectiveness of transcatheter aortic valve replacement (TAVR) on electrocardiographic remodeling in patients with severe aortic stenosis (AS), and identify its influencing factors. A cohort study was conducted on patients with a confirmed diagnosis of severe AS who successfully underwent TAVR at the Second Affiliated Hospital of Dalian Medical University between June 2018 and March 2023. Data, including standard 15-lead electrocardiograms and echocardiograms, were collected before the operation, 1 week after the operation, and 3 months after the operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!