This study aims to investigate the quality difference of short echo time (TE) breathhold 1H magnetic resonance spectroscopy (MRS) of the liver at 3.0T using the body and phased array coils, respectively. In total, 20 pairs of single-voxel proton spectra of the liver were acquired at 3.0T using the phased array and body coils as receivers. Consecutive stacks of breathhold spectra were acquired using the point resolved spectroscopy (PRESS) technique at a short TE of 30 ms and a repetition time (TR) of 1500 ms. The first spectroscopy sequence was "copied" for the second acquisition to ensure identical voxel positioning. The MRS prescan adjustments of shimming and water suppression, signal-to noise ratio (SNR), and major liver quantitative information were compared between paired spectra. Theoretical calculation of the SNR and homogeneity of the region of interest (ROI, 2 cm×2 cm×2 cm) using different coils loaded with 3D liver electromagnetic model of real human body was implemented in the theoretical analysis. The theoretical analysis showed that, inside the ROI, the SNR of the phase array coil was 2.8387 times larger than that of body coil and the homogeneity of the phase array coil and body coil was 80.10% and 93.86%, respectively. The experimental results showed excellent correlations between the paired data (all r > 0.86). Compared with the body coil group, the phased array group had slightly worse shimming effect and better SNR (all P values < .01). The discrepancy of the line width because of the different coils was approximately 0.8 Hz (0.00625 ppm). No significant differences of the major liver quantitative information of Cho/Lip2 height, Cho/Lip2 area, and lipid content were observed (all P values >0.05). The theoretical analysis and clinical experiment showed that the phased array coil was superior to the body coil with respect to 3.0T breathhold hepatic proton MRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400076 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122999 | PLOS |
Materials (Basel)
January 2025
School of Control Science and Engineering, Shandong University, Ji'nan 250061, China.
Carbon fiber reinforced plastics inevitably develop defects such as delamination, inclusions, and impacts during manufacturing and usage, which can adversely affect their performance. Ultrasonic phased array inspection is the most effective method for conducting nondestructive testing to ensure their quality. However, the diversity of defects within carbon fiber reinforced plastics makes it challenging for the current ultrasonic phased array inspection techniques to accurately identify these defects.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA.
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: In the realm of breast cancer diagnosis and treatment, accurately discerning molecular subtypes is of paramount importance, especially when aiming to avoid invasive tests. The updated guidelines for diagnosing and treating HER2 positive advanced breast cancer, as presented at the 2021 National Breast Cancer Conference and the Annual Meeting of the Chinese Society of Clinical Oncology, highlight the significance of this approach. A new generation of drug-antibody combinations has emerged, expanding the array of treatment options for HER2 positive advanced breast cancer and significantly improving patient survival rates.
View Article and Find Full Text PDFHeliyon
July 2024
Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XQ, UK.
This study explores the inspection of bolted connections in wind turbines, specifically focusing on the application of Phased Array Ultrasonic Testing (PAUT). The research comprises four sections: Acoustoelastic Constant calibration, high tension investigation on bolts, blind tests on larger bolts, and Finite Element Analysis (FEA) verification. The methodology shows accurate results for stress while the bolt is under operative loads, and produces a clear indication of when it is above these loads and beginning to deform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!