Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO) and wild-type (WT) controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1) and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase) were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400099 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124204 | PLOS |
Cell Biochem Funct
December 2017
Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
Unlabelled: The purpose of this study was to determine if Shc proteins influence the metabolic response to acute (7 days) feeding of a high-fat diet (HFD). To this end, whole animal energy expenditure (EE) and substrate oxidation were measured in the Shc knockout (ShcKO) and wild-type (WT) mice fed a control or HFD. The activities of enzymes of glycolysis, the citric acid cycle, electron transport chain (ETC), and β-oxidation were also investigated in liver and skeletal muscle of ShcKO and WT animals.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2016
VM Molecular Biosciences, School of Veterinary Medicine, University of California, Davis 1089 Veterinary Medicine Dr, VM3B, Davis, CA 95616, USA.
Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice.
View Article and Find Full Text PDFPLoS One
April 2016
Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States of America.
Aging Cell
December 2014
Department of Molecular Biosciences, UC Davis, Davis, CA, 95616, USA.
Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole-body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well-established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity.
View Article and Find Full Text PDFISRN Nutr
June 2014
VM Molecular Biosciences, University of California, Davis, CA 95616, USA.
There is increasing evidence that Shc proteins play a role in energy metabolism, and we have previously reported that knockdown of Shc proteins influences the energetic response to acute (3 days) calorie restriction (CR) in 18-month-old mice. Whether Shc proteins play a role in the metabolic response to CR in younger mice has yet to be elucidated. Hence, we sought to determine the impact of 3 days and longer term (2 months) CR on energy expenditure (EE) and respiratory quotient (RQ) in 3 month-old Shc knockout (ShcKO) and wild-type (WT) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!