Myocardial tissue caveolae.

Compr Physiol

University of Texas Health Science Center at San Antonio, Dept of Medicine/Cardiology, San Antonio, Texas, USA.

Published: April 2015

Caveolae and their coat proteins, caveolins (Cav), are cave-like invaginations found in the plasma membrane of a variety of cells. These unique vesicles and their coat proteins, Cavs, have diverse effects on endothelial function, nitric oxide synthesis regulation, signal transduction, cholesterol metabolism, and apoptosis. Animal studies in Cav knockout mice demonstrate the vital role of these structural proteins on endothelial and vascular function. Genetic studies have proposed that beside neoplasia, Cavs may play a role in the development of atherosclerosis, cardiomyopathy, long QT syndrome, pulmonary fibrosis, and muscular dystrophy. The role of Cav expression in atherosclerotic disease is poorly understood and remains controversial. Interestingly, there is emerging evidence between low Cav-1 levels and the vulnerable plaque, which could potentially identify Cav-1 as a novel plaque biomarker. Cavs, through intricate biochemical pathways involving endothelial nitric oxide synthase and mitogen-activated protein kinase, are known to affect the cardiovascular system at multiple levels. In the present review, we aim to highlight the nature and types of caveolae, caveolar signaling mechanisms and regulation, and the pathophysiology of Cavs as it pertains to the cardiovascular system. Ongoing research is needed to clarify the diagnostic and prognostic role of these novel proteins and to determine how the effects of Cavs can translate into clinical medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphy.c140050DOI Listing

Publication Analysis

Top Keywords

coat proteins
8
nitric oxide
8
cardiovascular system
8
cavs
5
myocardial tissue
4
tissue caveolae
4
caveolae caveolae
4
caveolae coat
4
proteins
4
proteins caveolins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!