We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to extract patches densely. Beyond simple strategies derived from regular interest region detectors, we propose approaches based on superpixels, edges, and a bank of Zernike filters used as detectors. The different approaches are evaluated on recent image retrieval and fine-grained classification benchmarks. Our results show that the regular dense detector is outperformed by other methods in most situations, leading us to improve the state-of-the-art in comparable setups on standard retrieval and fined-grained benchmarks. As a byproduct of our study, we show that existing methods for blob and superpixel extraction achieve high accuracy if the patches are extracted along the edges and not around the detected regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2015.2423557 | DOI Listing |
J Alzheimers Dis
January 2025
Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia.
Background: The introduction of therapeutics for Alzheimer's disease has led to increased interest in precisely quantifying amyloid-β (Aβ) burden for diagnosis, treatment monitoring, and further clinical research. Recent positron emission tomography (PET) hardware innovations including digital detectors have led to superior resolution and sensitivity, improving quantitative accuracy. However, the effect of PET scanner on Centiloid remains relatively unexplored and is assumed to be minimized by harmonizing PET resolutions.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
NASA Ames Research Center, Moffett Field, CA 94035, United States.
The BioSentinel CubeSat was deployed on the Artemis-I mission in November 2022 and has been continuously transmitting physical measurements of the space radiation environment since that time. Just before mission launch, we published computational model predictions of the galactic cosmic ray exposure expected inside BioSentinel for multiple locations and configurations. The predictions utilized models for the ambient galactic cosmic ray environment, radiation physics and transport, and BioSentinel geometry.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Mechanical Engineering, University of Michigan, USA.
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia.
Background/objectives: Janus kinase inhibitors open new horizons for small-molecule drugs in treating inflammatory bowel disease, with ritlecitinib demonstrating significant efficacy in clinical trials for ulcerative colitis and Crohn's disease. Ritlecitinib, a second-generation JAK3 inhibitor, is a novel therapeutic agent for alopecia areata and other autoimmune conditions.
Methods: A new stability-indicating UHPLC-DAD-MS/MS method was developed, validated, and applied for a forced degradation study of ritlecitinib under ICH guidelines.
Sensors (Basel)
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!