Photocontrolled organocatalyzed living radical polymerization was conducted over a wide range of irradiation wavelengths (350-750 nm). The polymerization was induced and controlled at the desired wavelengths by exploiting suitable organic catalysts. This system was finely responsive to the irradiation wavelength; the polymerization was instantly switched on and off, and the polymerization rate was sensitively modulated by altering the irradiation wavelength. The polymer molecular weight and its distribution (M(w)/M(n) = 1.1-1.4) were well controlled for methacrylate monomers up to fairly high conversions in many cases. The monomer scope encompassed various functional methacrylates, and their block copolymers were obtained. The feasibility of such a wide range of wavelengths and the fine response to the wavelength are unprecedented features. As a unique application of the wavelength-responsive nature of this system, we demonstrated "one-pot" selective regulation of living radical polymerization and another type of polymerization (ring opening polymerization), where the regulation was achieved by simply altering the irradiation wavelength. Facile operation and applicability to a wide range of polymer designs are advantages of this polymerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b02617 | DOI Listing |
Environ Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.
View Article and Find Full Text PDFBMC Med Ethics
January 2025
Department of Preventive Dentistry, College of Dentistry, University of Ha'il, Hail city, Saudi Arabia.
Background: Ethics is based on moral principles that should be the foundation for every healthcare decision, however, ethical concepts can often be challenging to define in specific clinical scenarios. There are several instances where a practising clinician often finds it difficult to make a proper decision despite maintaining integrity and professionalism. The objective of the present study was to explore the ethical dilemma faced by orthodontists practicing in Saudi Arabia concerning orthodontic treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!