Introduction: We set out to assess whether selenium, an antioxidant mineral could influence radiogenic collagen maturation.
Materials And Methods: The study comprise of normal (Group I), untreated oral carcinoma cases (Group II) (n = 20), cases who underwent radiotherapy (Group IIa) n = 10 and cases supplemented with selenium along with radiotherapy (Group IIb) n = 10.
Results: Spectrophotometric estimation and luminescence spectral assignment of collagen showed improved collagen maturation status. Measurement of the mature collagen cross-links hydroxylysylpyridinoline and lysylpyridinoline by high-performance liquid chromatography on irradiated tissues showed a considerable decrease in the selenium Group IIb (P < 0.05) indicating a decrease in collagen fragments. Electron microscopic studies showed significant morphological alteration in the selenium group. The micro nucleus frequency, decreased in radiation group (P < 0.05) compared with untreated (P < 0.05). While much more decrease observed in the selenium group (P < 0.05).
Discussion: The results represent the effect of selenium treatment with a bearing on carcinogenic process to curtail it, thus enhancing the maturity of collagen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0973-1482.143328 | DOI Listing |
J Agric Food Chem
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine.
View Article and Find Full Text PDFBackground: Childhood obesity and the rate of its spread is a serious threat to the reproductive health of the nation, especially among boys, being a background for delaying sexual development and further disrupting fertility.
Aim: To study the peculiarities of the ratio of the level of leptin and a number of toxic and essential chemical trace elements in biological environments in adolescent boys aged 13-14 years with obesity and delayed sexual development.
Materials And Methods: Three groups of adolescents aged 13-14 years were studied and formed: the main ones - with constitutional exogenous obesity of 1-2 degrees (1-20 boys without secondary signs of puberty; 2 - 24 boys with 2-4 stages of puberty according to Tanner) and comparisons (3 - 15 boys with normal body weight and without deviations in puberty).
Arch Environ Occup Health
January 2025
Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
Nutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!