Crystal structure of tetra-wickmanite, Mn(2+)Sn(4+)(OH)6.

Acta Crystallogr E Crystallogr Commun

Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA.

Published: February 2015

The crystal structure of tetra-wickmanite, ideally Mn(2+)Sn(4+)(OH)6 [mangan-ese(II) tin(IV) hexa-hydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetra-wickmanite belongs to the octa-hedral-framework group of hydroxide-perovskite minerals, described by the general formula BB'(OH)6 with a perovskite derivative structure. The structure differs from that of an ABO3 perovskite in that the A site is empty while each O atom is bonded to an H atom. The perovskite B-type cations split into ordered B and B' sites, which are occupied by Mn(2+) and Sn(4+), respectively. Tetra-wickmanite exhibits tetra-gonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetra-wickmanite structure is characterized by a framework of alternating corner-linked [Mn(2+)(OH)6] and [Sn(4+)(OH)6] octa-hedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacant A site is in a cavity in the centre of a distorted cube formed by eight octa-hedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetra-gonal stottite, Fe(2+)Ge(4+)(OH)6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384573PMC
http://dx.doi.org/10.1107/S2056989015001632DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
crystal structure
8
structure tetra-wickmanite
8
tetra-wickmanite
5
structure
5
tetra-wickmanite mn2+sn4+oh6
4
mn2+sn4+oh6 crystal
4
tetra-wickmanite ideally
4
ideally mn2+sn4+oh6
4
mn2+sn4+oh6 [mangan-eseii
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!