The dynamics of monocytes and microglia in Alzheimer's disease.

Alzheimers Res Ther

Department of Molecular Medicine, Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Faculty of Medicine, Laval University, 2705 Laurier Boulevard, Quebec City, QC G1V 4G2 Canada.

Published: April 2015

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting older people worldwide. It is a progressive disorder mainly characterized by the presence of amyloid-beta (Aβ) plaques and neurofibrillary tangles within the brain parenchyma. It is now well accepted that neuroinflammation constitutes an important feature in AD, wherein the exact role of innate immunity remains unclear. Although innate immune cells are at the forefront to protect the brain in the presence of toxic molecules including Aβ, this natural defense mechanism seems insufficient in AD patients. Monocytes are a key component of the innate immune system and they play multiple roles, such as the removal of debris and dead cells via phagocytosis. These cells respond quickly and mobilize toward the inflamed site, where they proliferate and differentiate into macrophages in response to inflammatory signals. Many studies have underlined the ability of circulating and infiltrating monocytes to clear vascular Aβ microaggregates and parenchymal Aβ deposits respectively, which are very important features of AD. On the other hand, microglia are the resident immune cells of the brain and they play multiple physiological roles, including maintenance of the brain's microenvironment homeostasis. In the injured brain, activated microglia migrate to the inflamed site, where they remove neurotoxic elements by phagocytosis. However, aged resident microglia are less efficient than their circulating sister immune cells in eliminating Aβ deposits from the brain parenchyma, thus underlining the importance to further investigate the functions of these innate immune cells in AD. The present review summarizes current knowledge on the role of monocytes and microglia in AD and how these cells can be mobilized to prevent and treat the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397873PMC
http://dx.doi.org/10.1186/s13195-015-0125-2DOI Listing

Publication Analysis

Top Keywords

immune cells
16
innate immune
12
monocytes microglia
8
alzheimer's disease
8
brain parenchyma
8
play multiple
8
inflamed site
8
aβ deposits
8
cells
7
microglia
5

Similar Publications

Objective: Breastfeeding is associated with improved health outcomes in infancy and throughout adulthood as breast milk encompasses diverse immune-active factors that affect the ontogeny of the immune system in breastfed (BF) infants. Nevertheless, the impact of infant feeding on the immune system is poorly understood, and a comprehensive understanding of immune system development in human infants is lacking. In this observational study, we addressed the effects of different infant feeding approaches on cell populations and parameters in the peripheral blood of infants to gain insight into the innate and adaptive arms of the immune system.

View Article and Find Full Text PDF

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

PEDV is a highly contagious enteric pathogen that can cause severe diarrhea and death in neonatal pigs. Despite extensive research, the molecular mechanisms of host's response to PEDV infection remain unclear. In this study, differentially expressed genes (DEGs), time-specific coexpression modules, and key regulatory genes associated with PEDV infection were identified.

View Article and Find Full Text PDF

The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!