Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had disappeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraquat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396112 | PMC |
http://dx.doi.org/10.4103/1673-5374.153698 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, China. Electronic address:
Thyroid hormone (TH) and it most active form triiodothyronine (T3) are crucial in promoting mitochondrial biogenesis and maintaining cellular homeostasis during the stress response, but their role in paraquat (PQ)-induced pulmonary fibrosis isunclear. The aim of this study was to examine whether there was a deficiency of TH in mouse lung tissue after PQ administration, and to explore the effect of T3, and potential mechanisms of action, in alleviation of PQ-induced pulmonary fibrosis. We found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in the lungs of patients with pulmonary fibrosis than in controls.
View Article and Find Full Text PDFJ Paediatr Child Health
January 2025
Queensland Children's Hospital, Brisbane, Queensland, Australia.
Aim: To report on the management of a toddler who had accidental ingestion of an unknown amount of paraquat, with treatment including continuous renal replacement therapy (CRRT), steroids and antifibrinolytics at a tertiary-level health system.
Methods: A 16-month-old child weighing 10 kg accidentally ingested an unknown amount of Gramoxone containing paraquat. The child was transferred to a tertiary centre Paediatric Intensive Care Unit (PICU) where she was electively intubated and commenced on CRRT at 7 hours and 15 minutes post-ingestion.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance.
View Article and Find Full Text PDFRespir Res
January 2025
Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
Background: We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).
Methods: Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed.
Antioxidants (Basel)
November 2024
Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal.
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!