Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424616 | PMC |
http://dx.doi.org/10.1098/rsbl.2015.0022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!