Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy.

Skin Res Technol

MEDyC Unit, MéDIAN Biophotonique et Technologies pour la Santé, SFR CAP SANTE, CNRS UMR 7369, Faculty of Pharmacy, University of Reims Champagne - Ardenne (URCA), Reims, France.

Published: February 2016

Background: Topical delivery of molecules into the human skin is one of the main issues in dermatology and cosmetology. Several techniques were developed to study molecules penetration into the human skin. Although widely accepted, the conventional methods such as Franz diffusion cells are unable to provide the accurate localization of actives in the skin layers. A different approach based on Raman spectroscopy has been proposed to follow-up the permeation of actives. It presents a high molecular specificity to distinguish exogenous molecules from skin constituents.

Methods: Raman micro-imaging was applied to monitor the skin penetration of hyaluronic acids (HA) of different molecular weights. The first step, was the spectral characterization of these HA. After, we have determined spectral features of HA by which they can be detected in the skin. In the second part, transverse skin sections were realized and spectral images were recorded.

Results: Our results show a difference of skin permeation of the three HA. Indeed, HA with low molecular weight (20-300 kDa) passes through the stratum corneum in contrast of the impermeability of high molecular weight HA (1000-1400 kDa).

Conclusion: Raman spectroscopy represents an analytical, non-destructive, and dynamic method to evaluate the permeation of actives in the skin layers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/srt.12228DOI Listing

Publication Analysis

Top Keywords

human skin
12
raman spectroscopy
12
skin
9
skin penetration
8
penetration hyaluronic
8
molecular weights
8
actives skin
8
skin layers
8
permeation actives
8
high molecular
8

Similar Publications

Acne vulgaris is a common and challenging condition to treat. To assess the effect of botulinum toxin type A (BTX-A) in the treatment of mild to moderate acne vulgaris. This study included 30 patients with mild to moderate acne vulgaris treated with intradermal injections of diluted BTX-A (microbotox) on the cheek in a regular grid pattern using very small droplets (microbotox).

View Article and Find Full Text PDF

UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.

View Article and Find Full Text PDF

Morphea is a chronic inflammatory fibrosing disorder. Since fibrosis is the hallmark of both scars and morphea, our attention was raised for the possible use of Fractional Ablative CO lasers and microneedling as treatment modalities for morphea. To compare the efficacy and safety of Fractional Ablative CO lasers and microneedling in the treatment of morphea.

View Article and Find Full Text PDF

Unraveling the controversy: exploring the link between sex hormones and skin cancers through a meta-analysis and systematic review.

Arch Dermatol Res

January 2025

Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, P. R. China.

Skin cancers continue to present unresolved challenges, particularly regarding the association with sex hormones, which remains a topic of controversy. A systematic review is currently warranted to address these issues. To analyze if sex hormones result in a higher incidence of skin cancers (cutaneous melanoma, basal cell carcinoma, squamous cell carcinoma).

View Article and Find Full Text PDF

Melanoma is an immunogenic tumor. The melanoma tumor immune microenvironment (TIME) is made up of a heterogenous mix of both immune and non-immune cells as well as a multitude of signaling molecules. The interactions between tumor cells, immune cells and signaling molecules affect tumor progression and therapeutic responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!