Aim: The aim of this study was investigate the effect of photodynamic therapy (PDT) using curcumin (C) as a photosensitizing agent irradiated with an LED (L) in the blue wavelength as a light source on a standard and clinical isolate of Streptococcus mutans (S. mutans) in a planktonic suspension model.
Materials And Methods: Suspensions of both strains were divided into 4 groups as follows: absence of C and L (control group: C-L-), with C and without L (C group: C+L-), absence of C with L (L group: C-L+) and presence of C and L (PDT group: C+L+). Three different concentrations of curcumin (0.75 mg/ml, 1.5 mg/ml and 3 mg/ml) and three light fluences of studied light source (24, 48 and 72 J cm(-2)) were tested. Aliquots of each studied group was plated in BHI agar and submitted to colony forming units counting (CFU/ml) and the data transformed into logarithmical scale.
Results: A high photoinactivation rate of more than 70% was verified to standard S. mutans strain submitted to PDT whereas the clinical isolate showed a lower sensitivity to all the associations of curcumin and LED. A slight bacterial reduction was verified to C+L- and C-L+, demonstrating no toxic effects to the isolated application of light and photosensitizer to both S. mutans strains tested.
Conclusion: Photodynamic therapy using a combination of curcumin and blue LED presented a substantial antimicrobial effect on S. mutans standard strain in a planktonic suspension model with a less pronounced effect on its clinical isolate counterparts due to resistance to this alternative approach.
Clinical Significance: Alternative antimicrobial approaches, as photodynamic therapy, should be encouraged due to optimal results against cariogenic bacteria aiming to prevent or treat dental caries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5005/jp-journals-10024-1626 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.
Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.
Int J Nanomedicine
December 2024
State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFBull Exp Biol Med
January 2025
Institute of Veterinary Medicine and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, Russia.
We conducted a comparative study of the mammary gland microbiota in female Wistar rats and the microbiota associated with breast cancer (BC) induced by the administration of N-methyl-N-nitrosourea, after surgical treatment, photodynamic therapy (PDT), and chemotherapy (CT). Selective nutrient media and a smear-fingerprint technique were used to study the microbiota. Staphylococcus, Streptococcus, and Lactobacillus were found in the mammary glands of intact rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!