Huddling and nest building are two methods of behavioral thermoregulation used by mice under cold stress. In the laboratory, mice are typically housed at an ambient temperature (Ta) of 20°C, well below the lower end of their thermoneutral zone. We tested the hypothesis that the thermoregulatory benefits of huddling and nest building at a Ta of 20°C would ameliorate this cold stress compared with being singly housed at 20°C as assessed by heart rate (HR), blood pressure (BP), triiodothyronine (T3), brown adipose (BAT) expression of Elovl3 mRNA, and BAT lipid content. A series of experiments using C57BL/6J female mice exposed to 20°C in the presence or absence of nesting material and/or cage mates was used to test this hypothesis. Mice showed large differences in HR, BP, shivering, and core body temperature (Tb) when comparing singly housed mice at 20°C and 30°C, but only a modest reduction in HR with the inclusion of cage mates or bedding. However, group housing and/or nesting at 20°C decreased T3 levels compared with singly housed mice at 20°C. Singly housed mice at 20°C had a 22-fold higher level of BAT Elovl3 mRNA expression and a significantly lower triacylglycerol (TAG) content of BAT compared with singly housed mice at 30°C. Group housing at 20°C led to blunted changes in both Elovl3 mRNA and TAG levels. These findings suggest that huddling and nest building have a limited effect to ameliorate the cold stress associated with housing at 20°C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345206 | PMC |
http://dx.doi.org/10.1152/ajpregu.00407.2014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!