The ventrolateral periaqueductal gray (vlPAG) is an important brain area, in which 5-HTergic neurons play key roles in descending pain modulation. It has been proposed that opioid peptides within the vlPAG can excite the 5-HTergic neurons by alleviating tonic inhibition from GABAergic neurons, the so-called disinhibitory effect. However, no direct morphological evidence has been observed for the micro-circuitry among the opioid peptide-, GABA-, and 5-HT-immunoreactive (ir) profiles nor for the functional involvement of the opioid peptides in the intrinsic properties of GABAergic and 5-HTergic neurons. In the present study, through microscopic observation of triple-immunofluorescence, we firstly identified the circuitry among the endomorphin-1 (EM1, an endogenous ligand for the μ-opioid receptor)-ir terminals and GABA-ir and 5-HT-ir neurons within the rat vlPAG. The synaptic connections of these neurons were further confirmed by electron microscopy. Through the in vitro whole-cell patch-clamp method, we showed that EM1 has strong inhibitory effects on the spiking of GABAergic neurons. However, although the resting membrane potential was hyperpolarized, EM1 actually increased the firing of 5-HTergic neurons. More interestingly, EM1 strongly inhibited the excitatory input to GABAergic neurons, as well as the inhibitory input to 5-HTergic neurons. Finally, behavioral results showed that pretreatment with a GABA(A) receptor antagonist potentiated the analgesic effect of EM1, while treatment with a GABA(A) receptor agonist blocked its analgesic effect. In summary, by utilizing morphological and functional methods, we found that the analgesic effect of EM1 is largely dependent on its potent inhibition on the inhibitory inputs to 5-HTergic neurons, which overwhelms EM1's direct inhibitory effect on 5-HTergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-015-9159-5 | DOI Listing |
Adv Sci (Weinh)
January 2025
Shandong Key Laboratory of Mental Disorders and Intelligent Control, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
Neuropsychopharmacology
November 2024
Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
Serotonin (5-hydroxytryptamine, 5-HT) is a powerful modulator of neuronal activity within the central nervous system and dysfunctions of the serotonergic system have been linked to several neuropsychiatric disorders such as major depressive disorders or schizophrenia. The anterior cingulate cortex (aCC) plays an important role in cognitive capture of stimuli and valence processing and it is densely innervated by serotonergic fibers from the nucleus raphe. In order to understand how pathophysiological 5-HT signalling can lead to neuropsychiatric diseases, it is important to understand the physiological actions of 5-HT on cortical circuits.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
The ascending neuromodulatory pathway from the median raphe nucleus (MRN) extends widely throughout midline/para-midline regions and robustly innervates the hippocampus. This neuromodulatory pathway is believed to be critical for regulating emotional and affective behaviors. Although the MRN primarily contains serotoninergic (5-HTergic), GABAergic, and glutamatergic neurons, glutamatergic neurons expressing vesicular glutamate transporter 3 (VGLUT3) form the primary MRN input to the hippocampus.
View Article and Find Full Text PDFIntroduction: Major depressive disorder (MDD) is a common and disabling mental health condition; the currently available treatments for MDD are insufficient to meet clinical needs due to their limited efficacy and slow onset of action. Hypidone hydrochloride (YL-0919) is a sigma-1 receptor agonist and a novel fast-acting antidepressant that is currently under clinical development.
Methods: To further understand the fast-acting antidepressant activity of YL-0919, this study focused on the role of 5-HTergic neurons in the dorsal raphe nucleus (DRN) in mice.
Commun Biol
August 2024
Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!