Nutritional energy stimulates NAD+ production to promote tankyrase-mediated PARsylation in insulinoma cells.

PLoS One

Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States of America; Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States of America.

Published: January 2016

The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/β-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395342PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122948PLOS

Publication Analysis

Top Keywords

nutritional energy
16
nad+ production
16
nad+
12
tnks
12
tnks regulates
8
tnks activity
8
degradation tnks
8
cellular energy
8
energy charge
8
energy
6

Similar Publications

Iron Deficiency in Tomatoes Reversed by Strains: A Synergistic Role of Siderophores and Plant Gene Activation.

Plants (Basel)

December 2024

Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain.

An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of was carried out, resulting in two strains, Z8.

View Article and Find Full Text PDF

Traditional Knowledge, Use, and Management of Among the Mijikenda Community in Kilifi, Kenya.

Plants (Basel)

December 2024

Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.

Although Lam. (Moringaceae) is a multipurpose tree with remarkable nutritional and therapeutic benefits, it is undervalued and neglected in Kenya, as the local people associate it with famine and poverty. The present study aims to assess and document the traditional knowledge on use and management as well as production constraints of the species among the Mijikenda community in Kilifi County, Kenya.

View Article and Find Full Text PDF

Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive ( L.) primary and secondary metabolites have not been fully investigated.

View Article and Find Full Text PDF

: Limited evidence links urinary metal exposure to osteoporosis in broad populations, prompting this study to cover this knowledge gap using supervised and unsupervised approaches. : This study included 15,923 participants from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020. Urinary concentrations of nine metals-barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony (Sb), thallium (Tl), and tungsten (Tu)-were measured using inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Risk Factors Related to Resting Metabolic Rate-Related Gene Variation in Children with Overweight/Obesity: 3-Year Panel Study.

Nutrients

December 2024

Department of Food & Nutrition & Research Institute of Obesity Sciences, Sungshin Women's University, Dobongro-76gagil-55, Kangbuk-ku, Seoul 01133, Republic of Korea.

Unlabelled: This study investigated how the gene variation related to RMR alteration affects risk factors of obese environments in children with obesity aged 8-9.

Methods: Over a three-year follow-up period, 63.3% of original students participated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!