Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage.

Water Res

Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China. Electronic address:

Published: June 2015

A novel simultaneous nitrification denitrification and phosphorous removal-sequencing batch reactor (SNDPR-SBR) enriched with PAOs (phosphorus accumulating organisms), DPAOs (denitrifying PAOs), and GAOs (glycogen accumulating organisms) at the ratio of 2:1:1 was developed to achieve the simultaneous nutrient and carbon removal treating domestic wastewater with low carbon/nitrogen ratio (≤3.5). The SNDPR system was operated for 120 days at extended anaerobic stage (3 h) and short aerobic stage at low oxygen concentration (2.5 h) with short sludge retention time (SRT) of 10.9 d and hydraulic retention time (HRT) of 14.6 h. The results showed that at the stable operating stage, the average effluent chemical oxygen demand (COD) and PO4(3-)-P concentrations were 47.2 and 0.2 mg L(-1), respectively, the total nitrogen (TN) removal efficiency was 77.7%, and the SND efficiency reached 49.3%. Extended anaerobic stage strengthened the intracellular carbon (mainly poly-β-hydroxybutyrate, PHB) storage, efficiently utilized the organic substances in wastewater, and provided sufficient carbon sources for denitrification and phosphorus uptake without external carbon addition. Short aerobic stage at low oxygen concentration (dissolved oxygen (DO): 1 ± 0.3 mg L(-1)) achieved a concurrence of nitrification, endogenous denitrification, denitrifying and aerobic phosphorus uptake, and saved about 65% energy consumption for aeration. Microbial community analysis demonstrated that P removal was mainly performed by aerobic PAOs while N removal was mainly carried out by denitrifying GAOs (DGAOs), even though DPAOs were also participated in both N and P removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2015.03.019DOI Listing

Publication Analysis

Top Keywords

low carbon/nitrogen
8
denitrification phosphorous
8
intracellular carbon
8
accumulating organisms
8
extended anaerobic
8
anaerobic stage
8
short aerobic
8
aerobic stage
8
stage low
8
low oxygen
8

Similar Publications

The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.

View Article and Find Full Text PDF

Introduction: Functional traits of desert plants exhibit remarkable responsiveness, adaptability and plasticity to environmental heterogeneity.

Methods: In this study, we measured six crucial plant functional traits (leaf carbon, leaf nitrogen, leaf phosphorus, leaf thickness, chlorophyll concentration, and plant height) and employed exemplar analysis to elucidate the effects of soil environmental heterogeneity on intraspecific traits variation in the high-moisture-salinity and low-moisture-salinity habitats of the Ebinur LakeWetland National Nature Reserve.

Results: The results showed that (1) The soil moisture and electrical conductivity heterogeneity showed significant differences between the two moisture-salinity habitats.

View Article and Find Full Text PDF

Iron-carbon micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification treating low carbon/nitrogen mariculture wastewater.

Environ Res

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.

View Article and Find Full Text PDF

Challenges in alpine meadow recovery: The minor effect of grass restoration on microbial resource limitation.

J Environ Manage

January 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China. Electronic address:

Microorganisms play a vital role in restoring soil multifunctionality and rejuvenating degraded meadows. The availability of microbial resources, such as carbon, nitrogen, and phosphorus, often hinders this process. However, there is limited information on whether grass restoration can alleviate microbial resource limitations in damaged slopes of high-altitude regions.

View Article and Find Full Text PDF

Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy.

Bioresour Technol

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:

Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!