The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites. Moreover, in ES cells Prep1 still binds mostly to promoters, as in total embryo trunk but, among the peaks bound exclusively in ES cells, the percentage of enhancers was three-fold higher. RNA-seq identifies about 1800 genes down-regulated in Prep1-/- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular essential components of the Wnt and Fgf pathways. These data agree with aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells with a deficient embryoid bodies (EBs) formation and differentiation. Re-establishment of the Prep1 level rescues the phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395233 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122518 | PLOS |
Cells
December 2024
Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden.
The human heart regenerates slowly through life, but how new cells are generated is mostly unknown. The atrioventricular junction (AVj) has been indicated as a potential stem cell niche region. Little is known about the protein composition of the human AVj.
View Article and Find Full Text PDFDev Biol
January 2025
Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:
During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.
View Article and Find Full Text PDFThe formation of the vertebrate body involves the coordinated production of trunk tissues from progenitors located in the posterior of the embryo. Although in vitro models using pluripotent stem cells replicate aspects of this process, they lack crucial components, most notably the notochord-a defining feature of chordates that patterns surrounding tissues. Consequently, cell types dependent on notochord signals are absent from current models of human trunk formation.
View Article and Find Full Text PDFScience
December 2024
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5 epithelial cells and plastic Pdgfra mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche.
View Article and Find Full Text PDFDevelopment
December 2024
Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!