The design of amphiphilic polymer compatibilizers for solubility manipulation of CNT composites was systematically generalized in this study. Structurally tailored multiamphiphilic compatibilizer were designed and synthesized by applying simple, high-yield reactions. This multiamphiphilic compatibilizer was applied for noncovalent functionalization of CNTs as well as provided CNTs with outstanding dispersion stability, manipulation of solubility, and hybridization with Ag nanoparticles (NPs). With regard to the dispersion properties, superior records in maximum concentration (2.88-3.10 mg/mL in chloroform), and mass ratio of the compatibilizer for good CNT dispersion (36 wt %) were achieved by MWCNTs functionalized with a multiamphiphilic block copolymer compatibilizer. In particular, the solubility limitations of MWCNT dispersion in solvents ranging from toluene (nonpolar) to aqueous solution (polar) are surprisingly resolved by introducing this multiamphiphilic polymer compatibilizer. Furthermore, this polymer compatibilizer allowed the synthesis of the hybrid CNT nanocomposites with Ag nanoparticles by an in situ nucleation process. As such, the multiamphiphilic compatibilizer candidate as a new concept for the noncovalent functionalization of CNTs can extend their use for a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b01849 | DOI Listing |
ACS Appl Mater Interfaces
May 2015
†Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea.
The design of amphiphilic polymer compatibilizers for solubility manipulation of CNT composites was systematically generalized in this study. Structurally tailored multiamphiphilic compatibilizer were designed and synthesized by applying simple, high-yield reactions. This multiamphiphilic compatibilizer was applied for noncovalent functionalization of CNTs as well as provided CNTs with outstanding dispersion stability, manipulation of solubility, and hybridization with Ag nanoparticles (NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!