The coupling of structural fluctuation and the dynamics of associated water molecules of biological macromolecules is vital for various biological activities. Although a number of molecular dynamics (MD) studies on proteins/DNA predicted the importance of such coupling, experimental evidence of variation of hydration dynamics with controlled structural fluctuation even in model macromolecule is sparse and raised controversies in the contemporary literature. Here, we have investigated dynamics of hydration at the surfaces of two similar anionic micelles sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) as model macromolecules using coumarin 500 (C500) as spectroscopic probe with femtosecond to picosecond time resolution up to 20 ns time window. The constituting surfactants SDS and SDBS are structurally similar except one benzene moiety in the SDBS may offer additional rigidity to the SDBS micelles through π-stacking and added bulkiness. The structural integrity of the micelles in the aqueous medium is confirmed in dynamic light scattering (DLS) studies. A variety of studies including polarization gated fluorescence spectroscopy and quasielastic neutron scattering (QENS) have been used to confirm differential structural fluctuation of SDS and SDBS micelles. We have also employed femtosecond-resolved Förster resonance energy transfer (FRET) in order to study binding of a cationic organic ligand ethidium bromide (EtBr) salt at the micellar surfaces. The distance distribution of the donor (C500)-acceptor (EtBr) in the micellar media reveals the manifestation of the structural flexibility of the micelles. Our studies on dynamical coupling of the structural flexibility with surface hydration in the nanoscopic micellar media may find the relevance in the "master-slave" type water dynamics in biologically relevant macromolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp511899q | DOI Listing |
J Am Chem Soc
January 2025
School of Energy and Environment, Southeast University, Nanjing 210096, China.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, Illinois, USA.
This study was undertaken to assess the antioxidant and neuropharmacological potentials of the methanol leaf extract of Acanthus ebracteatus (MAEL) through experimental and in silico methods. The phytochemical screening (PS) and GC-MS (gas chromatography-mass spectrometry) identified 28 phytochemicals with different classes in nature in MAEL. The MAEL revealed better antioxidant activity through various in vitro antioxidant assays.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Global Health and Social Medicine, Institute of Gerontology, Faculty of Social Science and Public Policy, King's College London, London, United Kingdom.
Introduction: Osteoporosis is a significant geriatric condition, considering its impact on fracture-related morbidity and mortality, particularly among older women. The interplay of clinical evidence, diagnostic tools availability, and broader societal attitudes toward aging and treatment efficacy affect medical attitude and prescribing behaviors. Using the example of osteoporosis in France and England, the study aims to unravel the intricacies of medical decision-making in geriatric care, offering insights into the evolving landscape of healthcare policy and practice, which in turn can help reduce futile biomedical research.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Xidian University, Xi'an, 710071, Shaanxi, China.
The impact of different turbulence on beams can be seen as optical distortions caused by refractive index fluctuations around vortices in turbulence. Therefore, from the perspective of transmission effects, the transmission outcomes of beam in different turbulences can be mutually equivalent. Since the mechanisms of beam propagation in compressible turbulence are not yet fully understood and the relevant theories are not well-established, a preliminary analysis of beam transmission in compressible turbulence is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!