Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2015-0114 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Vascular and Thyroid Surgery, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China. Electronic address:
Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is associated with complex pathophysiology including synaptic dysregulation, compromised neurotrophic signaling, deficits in autophagic flux and neuroinflammation). Skeletal muscle regulates many brain functions relevant to aging, by activating the muscle-to-brain axis through the secretion of skeletal muscle originating factors (myokines) with cellular-modifying, neuro and geroprotective properties. Our group developed transgenic mice that overexpress the skeletal muscle human Transcription Factor EB (TFEB), a master regulator of lysosomal-to-nucleus signaling, resulting in enhanced proteostasis and neuroprotection in a Tau mouse model.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!