Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397538 | PMC |
http://dx.doi.org/10.1038/srep09641 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
CNRS - UMR5128 - University of Lyon, 43 av du 11 nov 1918, Villeurbanne, FRANCE.
Biochim Biophys Acta Mol Cell Res
January 2025
KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium. Electronic address:
CISD2, a 2Fe2S cluster domain-containing protein, is implicated in Wolfram syndrome type 2, longevity and cancer. CISD2 is part of a ternary complex with IP receptors (IPRs) and anti-apoptotic BCL-2 proteins and enhances BCL-2's anti-autophagic function. Here, we examined how CISD2 impacted the function of BCL-2 in apoptosis and in controlling IPR-mediated Ca signaling.
View Article and Find Full Text PDFCell Chem Biol
October 2024
Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Electronic address:
BCL-w is a BCL-2 family protein that promotes cell survival in tissue- and disease-specific contexts. The canonical anti-apoptotic functionality of BCL-w is mediated by a surface groove that traps the BCL-2 homology 3 (BH3) α-helices of pro-apoptotic members, blocking cell death. A distinct N-terminal portion of BCL-w, termed the BCL-2 homology 4 (BH4) domain, selectively protects axons from paclitaxel-induced degeneration by modulating IP3 receptors, a noncanonical BCL-2 family target.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
June 2024
KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium. Electronic address:
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3).
View Article and Find Full Text PDFJ Clin Invest
December 2023
Brigham and Women's Hospital, Division of Pulmonary and Critical Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Although chronic low-grade inflammation does not cause immediate clinical symptoms, over the longer term, it can enhance other insults or age-dependent damage to organ systems and thereby contribute to age-related disorders, such as respiratory disorders, heart disease, metabolic disorders, autoimmunity, and cancer. However, the molecular mechanisms governing low-level inflammation are largely unknown. We discovered that Bcl-2-interacting killer (Bik) deficiency causes low-level inflammation even at baseline and the development of spontaneous emphysema in female but not male mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!