Methane (CH4) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH4. Omics analyses present the first molecular evidence of active atmospheric CH4-oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH4 uptake at the study site increases with ground temperature between 0 °C and 18 °C. Consequently, the atm CH4 sink strength is predicted to increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH4 oxidation, in the context of regional CH4 flux models and global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511939PMC
http://dx.doi.org/10.1038/ismej.2015.13DOI Listing

Publication Analysis

Top Keywords

mineral cryosols
16
atm ch4
12
ch4
9
active atmospheric
8
high arctic
8
ch4 emission
8
ch4 flux
8
acidic mineral
8
ch4 sink
8
cryosols
7

Similar Publications

Greenhouse gas (GHG) emissions from Arctic permafrost soils create a positive feedback loop of climate warming and further GHG emissions. Active methane uptake in these soils can reduce the impact of GHG on future Arctic warming potential. Aerobic methane oxidizers are thought to be responsible for this apparent methane sink, though Arctic representatives of these organisms have resisted culturing efforts.

View Article and Find Full Text PDF

A multi-approach characterization of three earth hummock fields has been conducted to understand the morphometrical characteristics and distribution pattern of these periglacial features in the Zackenberg Valley, NE Greenland. Earth hummocks develop in poorly-drained areas affected by intense cryogenic conditions. An accurate analysis of the morphometrical properties of hundreds of earth hummocks distributed between different Early Holocene moraine systems of the eastern slope of the Zackenberg Valley reveals an important control of microtopography on their distribution.

View Article and Find Full Text PDF

Permafrost-affected landscape soils are rich in organic matter and contain a high fraction of organic nitrogen, but much of this organic matter remains inaccessible due to nitrogen limitation. Microbial nitrification is a key process in the nitrogen cycle, controlling the availability of dissolved inorganic nitrogen (DIN) such as ammonium and nitrate. In this study, we investigate the microbial diversity of canonical nitrifiers and their potential nitrifying activity in the active layer of different Arctic cryosols in the Lena River Delta in North-East Siberia.

View Article and Find Full Text PDF

Denitrifiers, nitrogen-fixing bacteria and N2O soil gas flux in high Arctic ice-wedge polygon cryosols.

FEMS Microbiol Ecol

May 2019

Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada.

Climate warming and subsequent permafrost thaw may result in organic carbon and nutrient stores being metabolized by microbial communities, resulting in a positive feedback loop of greenhouse gas (GHG) soil emissions. As the third most important GHG, understanding nitrous oxide (N2O) flux in Arctic mineral ice-wedge polygon cryosols and its relationship to the active microbial community is potentially a key parameter for understanding future GHG emissions and climatic warming potential. In the present study, metatranscriptomic analyses of active layer Arctic cryosols, at a representative ice-wedge polygon site, identified active nitrogen-fixing and denitrifying bacteria that included members of Rhizobiaceae, Nostocaceae, Cyanothecaceae, Rhodobacteraceae, Burkholderiaceae, Chloroflexaceae, Azotobacteraceae and Ectothiorhodospiraceae.

View Article and Find Full Text PDF

Aerated soils form the second largest sink for atmospheric CH A near-complete genome of uncultured upland soil cluster that oxidize CH at <2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This first genome of high-affinity methanotrophs can help resolve the mysteries about their phylogenetic affiliation and metabolic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!