It is commonly accepted that aluminum ions may initiate the development of diverse diseases, including neurological disorders. So far, our knowledge of the molecular mechanisms of the interaction of aluminum with defined cellular structures has been still fragmentary. As functional key tasks of neuronal cells essentially depend on the activity of kinesin, we wanted to find out whether this motor protein represents a molecular target for aluminum. We demonstrate that aluminum ions inhibit (IC50 ∼50 μM) the ATPase of the neuron-specific kinesin KIF5A. The ATPase-active center itself, which is located in the kinesin motor domain, does not seem to be directly affected by aluminum. Our results suggest that inhibition is preferentially caused by aluminum binding to some sequence within the kinesin stalk leading to a conformational state of the kinesin molecule, similar to those described in cases of kinesin autoinhibition caused by motor domain-tail binding. Because of the relative high sequence conservation of mammalian kinesin-1 (to which KIF5A belongs), we assume that also in non-neuronal cells the intracellular transport can be affected by aluminum ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.5b00077DOI Listing

Publication Analysis

Top Keywords

aluminum ions
12
aluminum
7
kinesin
6
aluminum-induced kinesin
4
kinesin inactivation
4
inactivation potential
4
potential molecular
4
molecular impairment
4
impairment neuronal
4
neuronal transport
4

Similar Publications

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.

A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

Metal ion transport in maize: survival in a variable stress environment.

J Genet Genomics

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!