We carried out Monte Carlo simulations in the N,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1≤T*<4.0, where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25. A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevE.91.032409 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!