The techniques and laboratory processes involved in the production of DNA profiles for forensic applications are well developed, robust, and reliable. Unfortunately, they can now also be considered too slow and expensive to be able to match the ever-increasing demands placed upon them. The most rapid DNA profiling instrumentation in current usage are capillary electrophoresis (CE) systems. CE systems have greatly enhanced visualization and analysis throughput, but are still unable to keep up with current demand. However, developments in nanobiotechnology are allowing for the production of miniature systems to decrease the time and costs involved in profile production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/FSMP:1:3:221 | DOI Listing |
In Vitro Model
June 2024
3B's Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal.
Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkiye.
Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.
View Article and Find Full Text PDFLab Chip
January 2025
Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore.
Creative designs, precise fluidic manipulation, and automation have supported the development of microfluidics for single-cell applications. Together with the advancements in detection technologies and artificial intelligence (AI), microfluidic-assisted platforms have been increasingly used for new modalities of single-cell investigations and in spatial omics applications. This review explores the use of microfluidic technologies for morpholomics and spatial omics with a focus on single-cell and tissue characterization.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!