Spinocerebellar ataxia type 3(SCA3), also known as Machado-Joseph disease (MJD), is the most frequent subtype of autosomal dominant inherited spinocerebellar ataxias, which caused by the expansion of CAG repeats in the ATXN3 gene. The number of CAG repeats of the abnormal allele determines the rate of disease progression in patients with SCA3/MJD. Markers to assess the clinical severity, to predict the course of illness and to monitor the efficacy of therapeutic measures, can be clinical, biological, and radiological. Here, we aimed to explore whether the serum glial fibrillary acidic protein (GFAP) may act as a biomarker in SCA3/MJD patients and to evaluate the correlation between some markers with the number of CAG repeats in SCA3/MJD patients. We showed that the serum levels of GFAP were significantly higher in SCA3/MJD patients than in controls. There was a strong positive correlation between the age-adjusted GFAP levels with the number of CAG repeats. Age-adjusted International Cooperative Ataxia Rating Scale (ICARS) scores and Scale for the Assessment and Rating of Ataxia (SARA) scores correlated with the number of CAG repeats. Raw scores and disease duration-adjusted GFAP levels, ICARS scores, and SARA scores were not correlated with the number of CAG repeats. Our results reveal novel evidence for the role of the triplet expansion in SCA3/MJD-associated neuronal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12311-015-0667-7 | DOI Listing |
Commun Biol
March 2025
Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
Maternal high fat diet (MHFD) increased colitis susceptibility in adulthood. However, the mechanism remains unclear. We sought to explore whether novel gut immune receptor leucine-rich repeat C19 (LRRC19) contributed to the impaired mucus barrier of offspring exposed to MHFD via gut immune response and microbiota.
View Article and Find Full Text PDFCerebellum
March 2025
Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
Spinocerebellar ataxia type 12 (SCA12), an autosomal dominant cerebellar ataxia, caused by an expansion of (CAG) in the 5' of the PPP2R2B gene on chr5q32, is common in India. The illness often manifests late in life, with diverse neurological and psychiatric symptoms, suggesting involvement of different brain regions. Prominent neuronal loss and atrophy of the cerebellum have been noted earlier.
View Article and Find Full Text PDFHuntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding Huntingtin (HTT . While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout ( KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2).
View Article and Find Full Text PDFCNS Drugs
March 2025
Prilenia Therapeutics B.V., Naarden, The Netherlands.
Background: Huntington's disease (HD) is a rare, fatal, chronic progressive neurodegenerative disorder with a significant unmet medical need for effective treatments. Pridopidine is a novel, first-in-class, highly selective and potent sigma-1 receptor (S1R) agonist in development for HD. Pridopidine has been extensively studied in adult HD across the full spectrum of disease severity and age ranges, and its safety profile has been characterized in approximately 1600 participants across multiple studies and a broad range of doses.
View Article and Find Full Text PDFMol Neurobiol
March 2025
National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that stems from the expansion of CAG repeats within the coding region of Huntingtin (HTT) gene. Currently, there exists no effective therapeutic intervention that can prevent the progression of the disease. Our study aims to identify a novel genetic modifier with therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!