Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2015.03.033 | DOI Listing |
Waste Manag
December 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China. Electronic address:
In this study, ex-situ catalytic pyrolysis of oxygen-containing polycarbonate (PC) was conducted to prepare carbon nanotubes (CNTs) and H-rich syngas. This study examined the influence of the active metal components (Ni and Fe), catalyst pre-reduction, and pre-deoxygenation of pyrolysis volatiles on the catalytic performance and mechanism. Results show that the reductive constituents in pyrolysis volatiles make it difficult to reduce the Fe oxides, thus hindering the CNTs growth on Fe catalysts, compared to Ni catalysts.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Reactor, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
Bioresour Technol
December 2024
School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China. Electronic address:
Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed.
View Article and Find Full Text PDFACS Omega
September 2024
Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The vinasse waste was effectively converted to nanoporous carbon (NPC) via hydrothermal carbonization with potassium hydroxide (KOH) activation. The nanoporous carbon (NPC) exhibited a maximum surface area of 1018 m/g and it was utilized as a catalyst for the conversion of palm oil into green diesel fuel. The supported NPC catalyst was fabricated via a wet impregnation technique, where finely distributed iron phosphide (FeP) particles were cemented.
View Article and Find Full Text PDFNat Commun
September 2024
Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
Both plastics and CO are waste carbon resources, and their accumulation in nature has led to severe environmental pollution. However, simultaneously converting plastic waste and CO into value-added chemicals remains a challenge. Here we demonstrate a catalytic reforming process that converts plastics and CO into syngas over an electrified FeCrAl heating wire.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!