The present study aimed to evaluate the mid-term results of the fourth generation of ceramic on ceramic (CC) bearing. Demographics, surgical technique, complications, clinical and radiologic outcomes were analyzed in a series of 133 consecutive CC total hip arthroplasties (THAs) with a newest generation CC bearings to determine if these provide safe and well performing bearings. At the last follow-up, there were no cases of ceramic fracture or chipping and no revision surgery necessary for bearing related complication. One hip underwent two staged revision for infection and another underwent revision for dislocation, resulting in an overall 98.5% survival rate at a mean of 6 years. The newest generation of CC bearings provides a reliable and safe bearing in young, active patients undergoing THA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2015.03.028DOI Listing

Publication Analysis

Top Keywords

ceramic ceramic
8
ceramic bearing
8
total hip
8
newest generation
8
generation bearings
8
ceramic
5
midterm outcomes
4
outcomes fda
4
fda approved
4
approved ceramic
4

Similar Publications

This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.

View Article and Find Full Text PDF

Polar vortex hidden in twisted bilayers of paraelectric SrTiO.

Nat Commun

December 2024

School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. To date, all known polar vortices are present in or induced by ferroelectric materials. In this study, we find polar vortex arrays in paraelectric SrTiO.

View Article and Find Full Text PDF

Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Stabilizing the Fe Species of Nickel-Iron Double Hydroxide via Chelating Asymmetric Aldehyde-Containing THB Ligand for Long-Lasting Water Oxidation.

Adv Mater

December 2024

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

Nickel-iron layered double hydroxides (NiFe LDHs) are considered as promising substitutes for precious metals in oxygen evolution reaction (OER). However, most of the reported NiFe LDHs suffer from poor long-term stability because of the Fe loss during OER resulting in severe inactivation. Herein, a dynamically stable chelating interface through in situ transformation of asymmetric aldehyde-ligand (THB, 1,3,5-Tris(3'-hydroxy-4'-formylphenyl)-benzene) modified NiFe LDHs to anchor Fe and significantly enhance the OER stability is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!