In this study, two types of nanosystems, namely lecithin/chitosan nanoparticles and Pluronic® F127/chitosan micelles, have been prepared and evaluated for their potential for the ocular delivery of melatonin, which is known to exert an ocular hypotensive effect. The melatonin content, particle size, zeta potential and in vitro drug release properties were studied as a function of the presence of chitosan in the nanosystem. Lecithin/chitosan nanoparticles were evaluated in terms of the mucoadhesive properties by a newly established method based on HCE-T cells, also used in in vitro biocompatibility and permeability studies. Lecithin/chitosan nanoparticles were significantly larger than the corresponding F127/chitosan micelles (mean diameter of 241.8 vs. 20.7nm, respectively) and characterised by a higher surface charge (22.7 vs. 4.3mV, respectively). The HCE-T cell viability assay did not show significant toxic effects of nanosystems investigated at the (relevant) chitosan concentration tested. The permeability study results confirmed the permeation enhancing effect of F127, which was hindered in the presence of chitosan. Lecithin/chitosan nanoparticles were characterised by prominent mucoadhesive properties and prolonged melatonin release, which was shown to control melatonin permeation across an in vitro corneal epithelial model. Such properties demonstrate the potential for nanoparticles to provide an extended pre-corneal residence time of melatonin, ensuring higher eye-related bioavailability and extended intraocular pressure reduction compared to melatonin in both aqueous and micelle solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2015.04.003 | DOI Listing |
Chem Asian J
December 2024
Indian Institute of Technology Ropar, Department of Chemistry, Bara Phool, 140001, Rupnagar, INDIA.
Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of preparations available in market is to utilize nanomaterial as drug-carrier, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field.
View Article and Find Full Text PDFDiscov Nano
September 2024
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500 078, India.
In this research work, optimized nebivolol-loaded lecithin-chitosan hybrid nanoparticles (NEB-LCNPs) were prepared using sequential screening and optimization designs. The design of experiments software (DoE) was used to obtain a robust formulation that can improve ocular delivery of the NEB in the treatment of glaucoma. The optimized NEB-LCNPs had a mean particle size of 170.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
Int J Pharm
February 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India. Electronic address:
Dasatinib (DAS) is an oral tyrosine kinase inhibitor; however, its efficacy is significantly subsided by its low oral bioavailability. The present research aimed to improve DAS's oral delivery and efficacy in triple-negative breast cancer by fabricating its mucoadhesive lecithin-chitosan hybrid nanoparticles (DAS-L/CS-NPs). DAS-L/CS-NPs were optimized using Box-Behnken design which showed mean particle size and percent entrapment efficiency of 179.
View Article and Find Full Text PDFNanotechnology
January 2024
Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq.
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!