The importance of delay discounting to many socially important behavior problems has stimulated investigations of biological and environmental mechanisms responsible for variations in the form of the discount function. The extant experimental research, however, has yielded disparate results, raising important questions regarding Gene X Environment interactions. The present study determined the influence of stimuli that uniquely signal delays to reinforcement on delay discounting in two inbred mouse strains using a rapid-acquisition procedure. BALB/c and C57BL/6 mice responded under a six-component, concurrent-chained schedule in which the terminal-link delays preceding the larger-reinforcer were presented randomly across components of an individual session. Across conditions, components were presented either with or without delay-specific auditory stimuli, i.e., as multiple or mixed schedules. A generalized matching-based model was used to incorporate the impact of current and previous component reinforcer-delay ratios on current component response allocation. Sensitivity to reinforcer magnitude and delay were higher for BALB/c mice, but within-component preference reached final levels faster for C57Bl/6 mice. For BALB/c mice, acquisition of preference across blocks of a component was faster under the multiple than the mixed schedule, but final levels of sensitivity to reinforcement were unaffected by schedule. The speed of acquisition of preference was not different across schedules for C57Bl/6 mice, but sensitivity to reinforcement was higher under the multiple than the mixed schedule. Overall, differences in the acquisition and final form of the discount function were determined by a Gene X Environment interaction, but the presence of delay-specific stimuli attenuated genotype-dependent differences in magnitude and delay sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeab.148 | DOI Listing |
Unlabelled: Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer.
View Article and Find Full Text PDFBackground: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFThe transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs.
View Article and Find Full Text PDFFront Immunol
January 2025
Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
Background: Squalene epoxidase (SQLE) is a key enzyme in cholesterol biosynthesis and has been shown to negatively affect tumor immunity and is associated with poor outcomes of immunotherapy in various cancers. While most research in this area has focused on the impact of cholesterol on immune functions, the influence of SQLE-mediated squalene metabolism within the tumor immune microenvironment (TIME) remains unexplored.
Methods: We established an immune-competent mouse model (C57BL/6) bearing mouse pancreatic cancer xenografts (KPC cells) with or without stable SQLE-knockdown (SQLE-KD) to evaluate the impact of SQLE-mediated metabolism on pancreatic cancer growth and immune functions.
Front Cell Neurosci
December 2024
Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States.
Introduction: Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease.
Methods: This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!