The hypometabolic, stress-resistant dauer larva of Caenorhabditis elegans serves as an excellent model to study the molecular mechanisms of desiccation tolerance, such as maintenance of membrane organization, protein folding, xenobiotic and ROS detoxification in the dry state. Many organisms from diverse taxa of life have the remarkable ability to survive extreme desiccation in the nature by entering an ametabolic state known as anhydrobiosis (life without water). The hallmark of the anhydrobiotic state is the achievement and maintenance of an exceedingly low metabolic rate, as well as preservation of the structural integrity of the cell. Although described more than three centuries ago, the biochemical and biophysical mechanisms underlying this phenomenon are still not fully comprehended. This is mainly due to the fact that anhydrobiosis in animals was studied using non-model organisms, which are very difficult, if not impossible, to manipulate at the molecular level. Recently, we introduced the roundworm (nematode) Caenorhabditis elegans as a model for anhydrobiosis. Taking advantage of powerful genetic, biochemical and biophysical tools, we investigated several aspects of anhydrobiosis in a particular developmental stage (the dauer larva) of this organism. First, our studies allowed confirming the previously suggested role of the disaccharide trehalose in the preservation of lipid membranes. Moreover, in addition to known pathways such as reactive oxygen species defense, heat-shock and intrinsically disordered protein expression, evidence for some novel strategies of anhydrobiosis has been obtained. These are increased glyoxalase activity, polyamine and polyunsaturated fatty acid biosynthesis. All these pathways may constitute a generic toolbox of anhydrobiosis, which is possibly conserved between animals and plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-015-2300-xDOI Listing

Publication Analysis

Top Keywords

dauer larva
12
desiccation tolerance
8
caenorhabditis elegans
8
biochemical biophysical
8
anhydrobiosis
6
elegans dauer
4
larva paradigm
4
paradigm study
4
study metabolic
4
metabolic suppression
4

Similar Publications

Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms.

View Article and Find Full Text PDF

In response to unfavourable conditions and environmental duress, follows an alternative developmental stage called the dauer larva, which is associated with various metabolic changes. Dauers can survive in harsh conditions for several months. They resume their development on returning to favourable conditions.

View Article and Find Full Text PDF

The C. elegans Argonaute protein PRG-1/Piwi and associated piRNAs protect metazoan genomes by silencing transposons and other types of foreign DNA. As prg-1 mutants are propagated, their fertility deteriorates prior to the onset of a reproductive arrest phenotype that resembles a starvation-induced stress response.

View Article and Find Full Text PDF
Article Synopsis
  • Nematodes, like Caenorhabditis elegans, experience population cycles and have a survival strategy called diapause, which allows them to produce stress-resistant larvae during tough conditions like starvation.
  • The gut microbiome of mixing populations of C. elegans is well-studied, but the microbiome associated with dauer larvae remains largely unexplored, making it interesting for understanding how microbes are passed between nematode generations.
  • Research findings show that these dauers typically lack gut bacteria, indicating that the relationship between the host and its microbiome may not be stable over generations, potentially hindering coevolution of the two.
View Article and Find Full Text PDF

In adverse conditions, larvae can enter the alternative L2d stage. If conditions remain poor, L2d larvae can molt into stress-resistant dauer larvae. The FOXO ortholog promotes dauer formation, but mutants can enter dauer with incomplete penetrance in combination with a mutation in /TGFβ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!